×

Nonarchimedean quadratic Lagrange spectra and continued fractions in power series fields. (English) Zbl 1465.11163

The present paper deals with the nonarchimedean quadratic Lagrange spectrum defined by J. Parkkonen and F. Paulin [Math. Z. 294, No. 3–4, 1065–1084 (2020; Zbl 1461.11104)] and with continued fractions in power series fields.
A survey of this research is devoted to the following notions: the Lagrange spectrum, Hall’s ray, the quadratic Lagrange spectrum, Diophantine approximations, the complexity, the quadratic approximation constant, the (quadratic) Hurwitz constant, quadratic power series, etc. The special attention is given to continued fractions in power series fields.
The author gives the following description of the present research:
“Let \(\mathbb F_q\) be a finite field of order a positive power \(q\) of a prime number. We study the nonarchimedean quadratic Lagrange spectrum defined by Parkkonen and Paulin [loc. cit.] by considering the approximation by elements of the orbit of a given quadratic power series in \(\mathbb F_q((Y^{-1}))\), for the action by homographies and anti-homographies of \(\mathrm{PGL}_2(\mathbb F_q[Y ])\) on \(\mathbb F_q((Y^{-1})) \cup \{\infty\}\). While Parkkonen and Paulin’s approach used geometric methods of group actions on Bruhat-Tits trees, ours is based on the theory of continued fractions in power series fields.”
Connections between the present results and known results of other authors are discussed.

MSC:

11J06 Markov and Lagrange spectra and generalizations
11J61 Approximation in non-Archimedean valuations
11J70 Continued fractions and generalizations
11R11 Quadratic extensions

Citations:

Zbl 1461.11104

References:

[1] A. Broise-Alamichel, J. Parkkonen and F. Paulin, Equidistribution and Counting under Equilibrium States in Negative Curvature and Trees. Applications to NonArchimedean Diophantine Approximation, Progr. Math. 329, Birkh¨auser, Basel, 2019. · Zbl 1349.37094
[2] N. G. de Bruijn, A combinatorial problem, Indag. Math. 8 (1946), 461-467.
[3] Y. Bugeaud, Continued fractions with low complexity: Transcendence measures and quadratic approximation, Compos. Math. 148 (2012), 718-750. · Zbl 1328.11078
[4] Y. Bugeaud, On the quadratic Lagrange spectrum, Math. Z. 276 (2014), 985-999. · Zbl 1358.11077
[5] T. W. Cusick, The connection between the Lagrange and Markoff spectra, Duke Math. J. 42 (1975), 507-517. · Zbl 0347.10026
[6] T. W. Cusick and M. E. Flahive, The Markoff and Lagrange Spectra, Math. Surveys Monogr. 30, Amer. Math. Soc., Providence, RI, 1989. · Zbl 0685.10023
[7] T. W. Cusick, W. Moran, and A. D. Pollington, Hall’s ray in inhomogeneous Diophantine approximation, J. Austral. Math. Soc. Ser. A 60 (1996), 42-50. · Zbl 0860.11037
[8] G. A. Fre˘ıman, Diophantine Approximation and Geometry of Numbers (the Markov Problem), Kalininski˘ı Gos. Univ., Kalinin, 1975 (in Russian). · Zbl 0347.10025
[9] D. Gayfulin, Attainable numbers and the Lagrange spectrum, Acta Arith. 179 (2017), 185-199. · Zbl 1429.11121
[10] I. J. Good, Normal recurring decimals, J. London Math. Soc. 21 (1946), 167-169. · Zbl 0060.02702
[11] M. Hall, On the sum and product of continued fractions, Ann. of Math. 48 (1947), 966-993. · Zbl 0030.02201
[12] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Clarendon Press, 1979. · Zbl 0423.10001
[13] S. Hersonsky and F. Paulin, On the almost sure spiraling of geodesics in negatively curved manifolds, J. Differential Geom. 85 (2010), 271-314. · Zbl 1229.53050
[14] P. Hubert, L. Marchese, and C. Ulcigrai. Lagrange spectra in Teichm¨uller dynamics via renormalization, Geom. Funct. Anal. 25 (2015), 180-225. · Zbl 1348.37051
[15] A. Lasjaunias, A survey of Diophantine approximation in fields of power series, Monatsh. Math. 130 (2000), 211-229. · Zbl 0990.11043
[16] X. Lin, Quadratic Lagrange spectrum: I, Math. Z. 289 (2018), 515-533. · Zbl 1422.11148
[17] B. de Mathan, Approximations diophantiennes dans un corps local, Bull. Soc. Math. France Suppl. M´em. 21 (1970), 93 pp. · Zbl 0221.10037
[18] F. Maucourant, Sur les spectres de Lagrange et de Markoff des corps imaginaires quadratiques, Ergodic Theory Dynam. Systems 23 (2003), 193-205. · Zbl 1049.11068
[19] C. G. Moreira, Geometric properties of the Markov and Lagrange spectra. Ann. of Math. 188 (2018), 145-170. · Zbl 1404.11095
[20] J. Parkkonen and F. Paulin, Spiraling spectra of geodesic lines in negatively curved manifolds, Math. Z. 268 (2011), 101-142; Erratum: Math. Z. 276 (2014), 1215-1216. · Zbl 1228.53055
[21] J. Parkkonen and F. Paulin, On the nonarchimedean quadratic Lagrange spectra, Math. Z. (online, 2019). · Zbl 1461.11104
[22] F. Paulin, Groupe modulaire, fractions continues et approximation diophantienne en caract´eristique p, Geom. Dedicata 95 (2002), 65-85. · Zbl 1033.20026
[23] T. Pejkovi´c, Quadratic Lagrange spectrum, Math. Z. 283 (2016), 861-869. · Zbl 1347.11052
[24] O. Perron, Die Lehre von den Ketterbr¨uchen, Teubner, Leipzig, 1929. · JFM 55.0262.09
[25] C. G. Pinner and D. Wolczuk, On the inhomogeneous Hall’s ray of period-one quadratics, Experiment. Math. 10 (2001), 487-495. · Zbl 1028.11043
[26] W. M. Schmidt, On continued fractions and Diophantine approximation in power series fields, Acta Arith. 95 (2000), 139-166. · Zbl 0987.11041
[27] A. M. Vinogradov, B.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.