×

A combinatorial model for the known Bousfield classes. (English) Zbl 1464.55014

For an arbitrary prime \(p\), the author studies the set \(\mathcal L\) of Bousfield classes \(\langle E\rangle\) of \(p\)-local spectra \(E\), which has the structure of an ordered semiring by declaring \(\langle E\rangle\leq\langle F\rangle\) if each \(F_*\)-acyclic spectrum is \(E_*\)-acyclic. The goal is to shed light on Ravenel’s Telescope Conjecture. The method of attack is a two-stage construction. First, the author builds an ordered semiring quotient \(\pi:\mathcal L \to\overline{\mathcal L}\) which would be an isomorphism in case the Telescope Conjecture is true, meaning one can regard \(\overline{\mathcal L}\) as the largest quotient of \(\mathcal L\) in which the Telescope Conjecture holds. Second, the author gives an explicit, combinatorial construction of another ordered semiring \(\mathcal A\) that injects into the quotient \(\overline{\mathcal L}\) and such that \(\pi(\langle E\rangle)\) is in the image of the injection for most known and studied classes \(\langle E\rangle\in\mathcal L\).
The author notes it is reasonable to conjecture that a number of new Bousfield classes introduced in [M. Mahowald et al., Contemp. Math. 271, 217–284 (2001; Zbl 0984.55009)] lie in the image of the injection \(\mathcal A\hookrightarrow\overline{\mathcal L}\), thereby opening up a potential avenue for further investigation.

MSC:

55P42 Stable homotopy theory, spectra
55P60 Localization and completion in homotopy theory
16Y60 Semirings

Keywords:

Bousfield class

Citations:

Zbl 0984.55009

References:

[1] 10.1093/qmath/17.1.367 · Zbl 0146.19101 · doi:10.1093/qmath/17.1.367
[2] 10.1007/BF02566281 · Zbl 0421.55002 · doi:10.1007/BF02566281
[3] 10.1016/0022-4049(92)90131-X · Zbl 0759.55006 · doi:10.1016/0022-4049(92)90131-X
[4] 10.1090/S0002-9939-00-05669-0 · Zbl 0963.55005 · doi:10.1090/S0002-9939-00-05669-0
[5] 10.1090/surv/201/15 · Zbl 1328.55013 · doi:10.1090/surv/201/15
[6] 10.2307/120991 · Zbl 0924.55010 · doi:10.2307/120991
[7] 10.1090/conm/181/02036 · doi:10.1090/conm/181/02036
[8] 10.1090/conm/239/03601 · doi:10.1090/conm/239/03601
[9] 10.1090/memo/0666 · Zbl 0929.55010 · doi:10.1090/memo/0666
[10] 10.1007/BF01214408 · Zbl 0309.55003 · doi:10.1007/BF01214408
[11] ; Johnstone, Stone spaces. Cambridge Studies in Advanced Mathematics, 3 (1982) · Zbl 0499.54001
[12] 10.1090/conm/271/04358 · doi:10.1090/conm/271/04358
[13] 10.1016/0040-9383(85)90057-6 · Zbl 0568.55021 · doi:10.1016/0040-9383(85)90057-6
[14] 10.32917/hmj/1206129296 · Zbl 0697.55008 · doi:10.32917/hmj/1206129296
[15] 10.2307/2374308 · Zbl 0586.55003 · doi:10.2307/2374308
[16] ; Ravenel, Complex cobordism and stable homotopy groups of spheres. Pure and Applied Mathematics, 121 (1986) · Zbl 0608.55001
[17] ; Ravenel, Nilpotence and periodicity in stable homotopy theory. Annals of Mathematics Studies, 128 (1992) · Zbl 0774.55001
[18] 10.1016/0040-9383(66)90035-8 · Zbl 0163.36702 · doi:10.1016/0040-9383(66)90035-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.