×

The \(\infty\)-categorical Eckmann-Hilton argument. (English) Zbl 1444.18026

The Eckmann-Hilton argument [B. Eckmann and P. J. Hilton, Math. Ann. 145, 227–255 (1962; Zbl 0099.02101)] is an abstraction of the proof that the homotopy groups \(\pi_n(X;x_0)\) of a pointed space \((X;x_0)\) are commutative for \(n > 1\). The fact is that \(\pi_n(X;x_0)\) has two unital multiplications on it arising in different ways, yet one a morphism for the other; the argument yields that the two operations agree, are associative, and are commutative. The term is sometimes applied to arguments which identify models of one structure in a (perhaps higher) category of models of another (possibly the same) structure as an extra property or equipment of the first structure. For example, provision of a monoidal structure on an object in the 2-category of monoidal categories and strong monoidal functors amounts to equipping the object with a braiding; see [A. Joyal and R. Street, Adv. Math. 102, No. 1, 20–78 (1993; Zbl 0817.18007)]. For a vast generalisation, see [M. A. Batanin, Adv. Math. 217, No. 1, 334–385 (2008; Zbl 1138.18003)].
In other words, the argument is about tensor products of theories. In particular, as in the present paper, the theories might be operads. The main theorem states that, for reduced \(\infty\)-operads \(\mathcal{P}\) and \(\mathcal{Q}\), if \(\mathcal{P}\) is \(d_1\)-connected and \(\mathcal{Q}\) is \(d_2\)-connected then their Boardman-Vogt tensor product \(\mathcal{P}\otimes \mathcal{Q}\) is \(d_1+d_2+2\)-connected. The terms “reduced” and “\(d\)-connected” are defined in the paper.

MSC:

18N70 \(\infty\)-operads and higher algebra
18D15 Closed categories (closed monoidal and Cartesian closed categories, etc.)
55P48 Loop space machines and operads in algebraic topology
18D40 Internal categories and groupoids

References:

[1] 10.2140/gt.2018.22.1893 · Zbl 1391.18011 · doi:10.2140/gt.2018.22.1893
[2] 10.1007/s00014-003-0772-y · Zbl 1041.18011 · doi:10.1007/s00014-003-0772-y
[3] 10.1007/BFb0068547 · doi:10.1007/BFb0068547
[4] 10.1112/topo.12071 · Zbl 1473.55013 · doi:10.1112/topo.12071
[5] 10.1112/jtopol/jtq039 · Zbl 1221.55011 · doi:10.1112/jtopol/jtq039
[6] 10.1112/jtopol/jtt004 · Zbl 1291.55004 · doi:10.1112/jtopol/jtt004
[7] 10.1112/jtopol/jtt006 · Zbl 1291.55005 · doi:10.1112/jtopol/jtt006
[8] 10.1016/0022-4049(88)90103-X · Zbl 0672.55004 · doi:10.1016/0022-4049(88)90103-X
[9] 10.1007/BF01451367 · Zbl 0099.02101 · doi:10.1007/BF01451367
[10] 10.1016/j.aim.2014.10.020 · Zbl 1318.55012 · doi:10.1016/j.aim.2014.10.020
[11] 10.1515/forum-2015-0228 · Zbl 1376.55018 · doi:10.1515/forum-2015-0228
[12] 10.1016/S0022-4049(02)00135-4 · Zbl 1015.18008 · doi:10.1016/S0022-4049(02)00135-4
[13] 10.1515/9781400830558 · Zbl 1175.18001 · doi:10.1515/9781400830558
[14] 10.1007/BFb0067496 · doi:10.1007/BFb0067496
[15] 10.1016/S0166-8641(03)00055-5 · Zbl 1076.18007 · doi:10.1016/S0166-8641(03)00055-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.