×

\(C^{1,0}\) foliation theory. (English) Zbl 1429.57013

The general goal of the paper is to prove versions of known approximation results on foliations of codimension one on \(3\)-manifolds with lower order of differentiability. Let \(\mathcal F\) be a foliation of a smooth \(3\)-manifold \(M\) (recall that any topological \(3\)-manifold has a smooth structure, which is unique up to diffeomorphisms). \(M\) may have boundary or corners; in this case, it is assumed to be sutured in the sense of Gabai. Roughly speaking, for \(k\ge l\) in \(\mathbb N\cup\{\infty\}\), the notation \(C^{k,l}\) is used to indicate that \(\mathcal F\) is tangentially \(C^k\) and transversely \(C^l\). All foliations of the paper are assumed to be at least \(C^{1,0}\); in particular, this applies to \(\mathcal F\) in the statement of the main theorems. Then \(C^0\) close foliations means that the fields of tangent planes to their leaves are \(C^0\) close. The first main theorem of the paper states that there is a small \(C^0\) isotopy of \(M\) taking \(\mathcal F\) to a \(C^{\infty,0}\) foliation that is \(C^0\) close to \(\mathcal F\). The second main theorem states that, if \(\mathcal F\) is also transversely oriented and measured (endowed with a continuous transverse measure), then there is an isotopy of \(M\) taking \(\mathcal F\) to a \(C^\infty\) measured foliation that is \(C^0\) close to \(\mathcal F\). As a corollary it follows that \(\mathcal F\) is \(C^0\) close to a smooth fibration over \(S^1\) (a version of the Tischler’s theorem). The last main theorem states that \(\mathcal F\) can be arbitrarily \(C^0\) approximated by a \(C^{\infty,0}\) Denjoy blowup along any prescribed countable collection of leaves. The main tool used in the proofs is a certain kind of flow box decomposition introduced by the authors.

MSC:

57K35 Other geometric structures on 3-manifolds
57K30 General topology of 3-manifolds
57R30 Foliations in differential topology; geometric theory

References:

[1] 10.1073/pnas.9.3.93 · doi:10.1073/pnas.9.3.93
[2] 10.1007/s00039-016-0387-2 · Zbl 1362.57037 · doi:10.1007/s00039-016-0387-2
[3] 10.1007/s00208-012-0852-7 · Zbl 1279.57008 · doi:10.1007/s00208-012-0852-7
[4] 10.2140/agt.2001.1.579 · Zbl 0978.57011 · doi:10.2140/agt.2001.1.579
[5] ; Candel, Foliations, I. Graduate Studies in Mathematics, 23 (2000) · Zbl 0936.57001
[6] 10.4310/CAG.2019.v27.n2.a4 · Zbl 1447.57033 · doi:10.4310/CAG.2019.v27.n2.a4
[7] ; Denjoy, C. R. Acad. Sci. Paris, 194, 830 (1932) · Zbl 0004.06202
[8] ; Denjoy, C. R. Acad. Sci. Paris, 194, 2014 (1932) · Zbl 0004.34803
[9] ; Denjoy, C. R. Acad. Sci. Paris, 195, 934 (1932) · Zbl 0006.03502
[10] ; Denjoy, J. Math. Pures Appl., 11, 333 (1932) · Zbl 0006.30501
[11] ; Denjoy, C. R. Acad. Sci. Paris, 223, 5 (1946) · Zbl 0063.01085
[12] 10.2307/1971123 · Zbl 0418.57012 · doi:10.2307/1971123
[13] ; Eliashberg, Confoliations. University Lecture Series, 13 (1998) · Zbl 0893.53001
[14] 10.4310/jdg/1214437784 · Zbl 0533.57013 · doi:10.4310/jdg/1214437784
[15] 10.4310/jdg/1214441487 · Zbl 0627.57012 · doi:10.4310/jdg/1214441487
[16] 10.4310/jdg/1214441488 · Zbl 0639.57008 · doi:10.4310/jdg/1214441488
[17] ; Haefliger, Ann. Scuola Norm. Sup. Pisa, 16, 367 (1962) · Zbl 0122.40702
[18] 10.1007/978-3-322-85619-7 · doi:10.1007/978-3-322-85619-7
[19] 10.2140/gtm.2015.19.21 · Zbl 1333.57030 · doi:10.2140/gtm.2015.19.21
[20] 10.2140/gt.2017.21.3601 · Zbl 1381.57014 · doi:10.2140/gt.2017.21.3601
[21] 10.2307/1970704 · Zbl 0142.41104 · doi:10.2307/1970704
[22] 10.2307/1969769 · Zbl 0048.17102 · doi:10.2307/1969769
[23] 10.1007/978-1-4612-9906-6 · doi:10.1007/978-1-4612-9906-6
[24] ; Novikov, Trudy Moskov. Mat. Obšč., 14, 248 (1965)
[25] 10.2140/gt.2004.8.311 · Zbl 1056.57020 · doi:10.2140/gt.2004.8.311
[26] ; Ozsváth, European Congress of Mathematics, 769 (2005)
[27] ; Reeb, Sur les espaces fibrés et les variétés feuilletées. Actualités Sci. Ind., 1183, 91 (1952) · Zbl 0049.12602
[28] 10.1090/memo/0339 · Zbl 1415.57001 · doi:10.1090/memo/0339
[29] 10.1016/0040-9383(70)90037-6 · Zbl 0177.52103 · doi:10.1016/0040-9383(70)90037-6
[30] 10.4153/CJM-1960-045-7 · Zbl 0108.36101 · doi:10.4153/CJM-1960-045-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.