×

Twisted differential generalized cohomology theories and their Atiyah-Hirzebruch spectral sequence. (English) Zbl 1427.19006

The paper is devoted to a construction of some Atiyah-Hirzebruch spectral sequences (AHSS) as the same ones for the twisted differential spectra as bundles of spectra equipped with a flat connection.
Let \(M,N\) be smooth manifolds, \(\mathcal M f/M\) the \(\infty\)-overcategory on arrows \(N \to M\), with Grothendieck topology of good open covers, \(\mathcal Sp\) the category of spectra, \(\mathcal R\) the ordinary ring spectrum, \(\mathrm{const}(\mathcal R) : \mathcal Mf \to \mathcal Sp\) – the prestack with Grothendieck topology of good open covers, \(\underline{\mathcal R}\) – its stackification on \(M\) and the same over any locally constant sheaf of spectra on \(\mathcal Mf\). Let \(\mathrm{Pic}^{\mathrm{top}}_{\underline{\mathcal R}}(M)\) be the \(\infty\)-groupoid of invertible objects in the \(\infty\)-category of locally constant sheaves of \(\underline{\mathcal R}\)-module spectra over \(M\), with the properties of descent, correspondence with topological twist, twisted cohomology theory. The category of differential ring spectra \(\mathrm{diff}(\mathcal Ring \mathcal Sp)\) appeared as the \((\infty,1)\)-pullback of composition \(H\circ \imath\) of localization \(\imath\) at weak equivalences and functors \(H\) of the Eilenberg-Mac Lane equivalence from the ordinary 1-category \(\mathbb R-\mathrm{CDGA}\) of commutative differential graded algebras to the \((\infty,1)\)-category \(\mathbb R-\mathcal Alg\mathcal Sp\) of commutative \(H\mathbb R\)-algebra spectra, and the smash product with Eilenberg-MacLane spectrum functor \(\wedge H\mathbb R\) from the \((\infty,1)\)-category of \(E_\infty\)-ring spectra to the \((\infty,1)\)-category \(\mathbb R-\mathcal Alg\mathcal Sp\) (Definittion 1). The de Rham complex with values in a CDGA is defined as \(\Omega(-,A) := \Omega^* \otimes_\mathbb R \underline{A}\) as the tensor product of the de Rham complex with the local constant sheaf of \(A\). A smooth stacks twist is defined as a sheaf \(\mathcal L\) of \(\Omega(-,A)\)-modules on the restricted site \(\mathcal Mf/M\) which is invertible, K-flat and weak locally constant over \(\Omega^*(-,A)\) (Definition 2) and the triple \((\mathcal R_\tau, t, \mathcal L)\) is a differential twist. (Defintion 3). The differential twists have the well properties like local triviality (Proposition 4) and the twisted differential cohomologies \(\hat{R}^*(-;\hat \tau)\) have good properties like additivity, local triviality, Meyer-Vietoris sequences like bundles. The canonical bundle of spectra over the Picard 1-groupoid which comes from the 1-Grothendieck construction. The local-global construction of twisted differential cohomology is done (Theorem 8) and the twisted differentials \(\hat {\mathcal R}_{\hat \tau}= ({\mathcal R}_\tau, t, \mathcal L)\) appeared as flat bundles \(E_\tau \to M\) of spectra with connection \(\nabla\) as the differential on \(\mathcal L\) of sections of the bundle \(E\wedge \wedge^\bullet(T^*M) \to M\). The ordinary techniques of reduction of the structure group and construction from local data of a flat bundles of spectra are applicable. The general construciton of Atiyah-Hirzebruch spectral sequence \(\widehat{\mathrm{AHSS}}_{\hat \tau}\) (Theorem 18) is done with \(E_2\)-page, based on \(\check C\)ech cohomology. The usual properties of \(\widehat{\mathrm{AHSS}}_{\hat \tau}\) like: linearity, normalization, naturality, module differential (Proposition 19). The AHSS in twisted differential K-theory looks like very good one related with the differential K-theory twisted Chern character \(\hat{\mathrm ch}_{\hat h}: \hat{\mathcal K}_{\hat h} \to \hat H \mathbb Q[u,u^{-1}]_{\hat h}\) over \(M\) (Definition 23). The obstructions associated to curvature forms are considered (Lemma 24, Proposition 26). It has a correspondence with Massey products (Proposition 27, Lemma 28). Various example are considered in §3.5 for 3-sphere \(\mathbb S^3\). The paper is a good introduction to the subject.

MSC:

19L50 Twisted \(K\)-theory; differential \(K\)-theory
53C05 Connections (general theory)
55S05 Primary cohomology operations in algebraic topology
55R20 Spectral sequences and homology of fiber spaces in algebraic topology
55T25 Generalized cohomology and spectral sequences in algebraic topology
14A20 Generalizations (algebraic spaces, stacks)
19K35 Kasparov theory (\(KK\)-theory)

References:

[1] 10.1016/0040-9383(68)90009-8 · Zbl 0199.26302 · doi:10.1016/0040-9383(68)90009-8
[2] 10.1090/pspum/081/2681757 · doi:10.1090/pspum/081/2681757
[3] 10.1112/jtopol/jtu009 · Zbl 1316.55005 · doi:10.1112/jtopol/jtu009
[4] 10.1090/S0002-9947-2014-05937-0 · Zbl 1296.19004 · doi:10.1090/S0002-9947-2014-05937-0
[5] 10.2140/gt.2014.18.1115 · Zbl 1288.19006 · doi:10.2140/gt.2014.18.1115
[6] ; Atiyah, Differential geometry. Proc. Sympos. Pure Math., 3, 7 (1961)
[7] ; Atiyah, Ukr. Mat. Visn., 1, 287 (2004)
[8] 10.1142/9789812772688_0002 · doi:10.1142/9789812772688_0002
[9] 10.1090/conm/239/03597 · doi:10.1090/conm/239/03597
[10] 10.1007/978-1-4757-3951-0 · doi:10.1007/978-1-4757-3951-0
[11] 10.1007/s002200200646 · Zbl 1036.19005 · doi:10.1007/s002200200646
[12] 10.1088/1126-6708/2004/03/029 · doi:10.1088/1126-6708/2004/03/029
[13] 10.1007/978-3-7643-8608-5_5 · doi:10.1007/978-3-7643-8608-5_5
[14] 10.2140/agt.2019.19.1631 · Zbl 1447.55005 · doi:10.2140/agt.2019.19.1631
[15] 10.1007/s40062-014-0092-5 · Zbl 1341.57020 · doi:10.1007/s40062-014-0092-5
[16] ; Bunke, Periodic twisted cohomology and T-duality. Astérisque, 337 (2011) · Zbl 1245.55004
[17] 10.1016/j.geomphys.2009.02.002 · Zbl 1173.19003 · doi:10.1016/j.geomphys.2009.02.002
[18] 10.1007/BF02684650 · Zbl 0207.22003 · doi:10.1007/BF02684650
[19] 10.1016/j.top.2006.06.007 · Zbl 1111.55005 · doi:10.1016/j.top.2006.06.007
[20] 10.1016/j.geomphys.2013.07.011 · Zbl 1280.81132 · doi:10.1016/j.geomphys.2013.07.011
[21] 10.1007/s00220-014-2228-1 · Zbl 1325.81121 · doi:10.1007/s00220-014-2228-1
[22] 10.4310/ATMP.2012.v16.n1.a5 · Zbl 1420.57074 · doi:10.4310/ATMP.2012.v16.n1.a5
[23] 10.4310/SDG.2002.v7.n1.a6 · doi:10.4310/SDG.2002.v7.n1.a6
[24] 10.1112/jtopol/jtm001 · Zbl 1188.19005 · doi:10.1112/jtopol/jtm001
[25] 10.11429/sugaku.0641047 · doi:10.11429/sugaku.0641047
[26] 10.1007/s00220-010-1080-1 · Zbl 1204.19006 · doi:10.1007/s00220-010-1080-1
[27] 10.1016/j.aim.2018.02.002 · Zbl 1398.58001 · doi:10.1016/j.aim.2018.02.002
[28] 10.1007/s40062-017-0178-y · Zbl 1404.55011 · doi:10.1007/s40062-017-0178-y
[29] 10.1016/j.aim.2018.07.019 · Zbl 1477.55014 · doi:10.1016/j.aim.2018.07.019
[30] 10.2140/agt.2017.17.2357 · Zbl 1375.55002 · doi:10.2140/agt.2017.17.2357
[31] 10.1007/s10455-017-9583-z · Zbl 1398.58002 · doi:10.1007/s10455-017-9583-z
[32] 10.1007/s00220-014-2270-z · Zbl 1325.57017 · doi:10.1007/s00220-014-2270-z
[33] 10.5802/ambp.337 · Zbl 1329.19010 · doi:10.5802/ambp.337
[34] 10.4310/jdg/1143642908 · Zbl 1116.58018 · doi:10.4310/jdg/1143642908
[35] 10.1142/S0219199713500144 · Zbl 1388.19004 · doi:10.1142/S0219199713500144
[36] ; Karoubi, 147 (1987)
[37] ; Karoubi, Topics in noncommutative geometry. Clay Math. Proc., 16, 223 (2012) · Zbl 1254.00025
[38] 10.1016/j.nuclphysb.2005.02.016 · Zbl 1207.81127 · doi:10.1016/j.nuclphysb.2005.02.016
[39] 10.1007/s11401-014-0842-z · Zbl 1306.55013 · doi:10.1007/s11401-014-0842-z
[40] 10.4310/CAG.1994.v2.n2.a6 · Zbl 0840.58044 · doi:10.4310/CAG.1994.v2.n2.a6
[41] 10.1515/9781400830558 · Zbl 1175.18001 · doi:10.1515/9781400830558
[42] 10.1088/1126-6708/2001/11/062 · doi:10.1088/1126-6708/2001/11/062
[43] 10.1112/jlms.12085 · Zbl 1390.19011 · doi:10.1112/jlms.12085
[44] 10.1007/s00220-003-0807-7 · Zbl 1030.19004 · doi:10.1007/s00220-003-0807-7
[45] 10.1016/j.aim.2004.11.006 · Zbl 1098.19002 · doi:10.1016/j.aim.2004.11.006
[46] 10.4310/jdg/1320067649 · Zbl 1238.58023 · doi:10.4310/jdg/1320067649
[47] 10.1017/s0305004100037245 · doi:10.1017/s0305004100037245
[48] 10.1090/surv/132 · doi:10.1090/surv/132
[49] 10.1017/CBO9780511626289 · doi:10.1017/CBO9780511626289
[50] 10.1007/s40062-017-0177-z · Zbl 1395.19002 · doi:10.1007/s40062-017-0177-z
[51] 10.1016/0003-4916(86)90099-0 · doi:10.1016/0003-4916(86)90099-0
[52] ; Rosenberg, Operator algebras and applications, I. Proc. Sympos. Pure Math., 38, 35 (1982)
[53] 10.1017/S1446788700033097 · doi:10.1017/S1446788700033097
[54] 10.1016/j.geomphys.2008.11.009 · Zbl 1160.81447 · doi:10.1016/j.geomphys.2008.11.009
[55] 10.1090/pspum/081/2681765 · doi:10.1090/pspum/081/2681765
[56] 10.1007/s00220-012-1510-3 · Zbl 1252.81110 · doi:10.1007/s00220-012-1510-3
[57] 10.1112/jtopol/jtv020 · Zbl 1330.55007 · doi:10.1112/jtopol/jtv020
[58] 10.1353/ajm.2007.0014 · Zbl 1120.55007 · doi:10.1353/ajm.2007.0014
[59] ; Simons, Quanta of maths. Clay Math. Proc., 11, 579 (2010)
[60] 10.1017/CBO9780511526398.015 · doi:10.1017/CBO9780511526398.015
[61] 10.1016/j.aim.2005.12.001 · Zbl 1113.19005 · doi:10.1016/j.aim.2005.12.001
[62] 10.1016/j.ansens.2004.10.002 · Zbl 1069.19006 · doi:10.1016/j.ansens.2004.10.002
[63] 10.1007/s40062-015-0106-y · Zbl 1359.55004 · doi:10.1007/s40062-015-0106-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.