×

Quaternion model of programmed control over motion of a Chaplygin ball. (Russian. English summary) Zbl 1447.93233

Summary: This paper deals with the problem of program control of the motion of a dynamically asymmetric balanced ball on the plane using three flywheel motors, provided that the ball rolls without slipping. The center of mass of the mechanical system coincides with the geometric center of the ball. Control laws are found to ensure the motion of the ball along the basic trajectories (line and circle), as well as along an arbitrarily given piecewise smooth trajectory on the plane. In this paper, we propose a quaternion model of ball motion. The model does not require using the traditional trigonometric functions. Kinematic equations are written in the form of linear differential equations eliminating the disadvantages associated with the use of Euler angles. The solution of the problem is carried out using the quaternion function of time, which is determined by the type of trajectory and the law of motion of the point of contact of the ball with the plane. An example of ball motion control is given and a visualization of the ball-flywheel system motion in a computer algebra package is presented.

MSC:

93C85 Automated systems (robots, etc.) in control theory
93C15 Control/observation systems governed by ordinary differential equations
70Q05 Control of mechanical systems

References:

[1] S. V. Bolotin, “The problem of optimal control of a Chaplygin ball by internal rotors”, Nelin. Dinam., 8:4 (2012), 837-852 (in Russian) · Zbl 1264.37015 · doi:10.20537/nd1204011
[2] A. V. Borisov, A. A. Kilin, I. S. Mamaev, How to control the Chaplygin sphere using rotors, eds. A. V. Borisov, I. S. Mamaev, Yu. L. Karavaev, Institute of Computer Science, M.-Izhevsk, 2013, 131-168 (in Russian) · Zbl 1303.37021
[3] A. V. Borisov, I. S. Mamaev, Rigid body dynamics, Regular and Chaotic Dynamics, Izhevsk, 2001, 384 pp. · Zbl 1004.70002
[4] A. V. Borisov, A. A. Kilin, I. S. Mamaev, “How to control the Chaplygin sphere using rotors”, Nelin. Dinam., 8:2 (2012), 289-307 (in Russian) · Zbl 1264.37016 · doi:10.20537/nd1202006
[5] A. V. Borisov, A. A. Kilin, I. S. Mamaev, “How to control the Chaplygin ball using rotors, II”, Nelin. Dinam., 9:1 (2013), 59-76 (in Russian) · Zbl 1303.37021 · doi:10.20537/nd1301006
[6] Yu. F. Golubev, “Quaternion algebra in rigid body kinematics”, Keldysh Institute Preprints, 2013, 039, 23 pp. (in Russian)
[7] A. P. Mashtakov, Yu. L. Sachkov, “Extremal trajectories and the asymptotics of the Maxwell time in the problem of the optimal rolling of a sphere on a plane”, Sbornik: Mathematics, 202:9 (2011), 1347-1371 · Zbl 1252.49056 · doi:10.1070/SM2011v202n09ABEH004190
[8] V. E. Pavlovskii, G. P. Terekhov, “Control of the mobile spherical information robot with three orthogonal flywheels”, Spetstekhnika i Svyaz’, 2012, no. 3, 19-24 (in Russian)
[9] G. P. Terekhov, “Control of the ball with three wheels on orthogonal axes”, Modern mechatronics, Collection of scientific papers of the All-Russian Scientific School (Orekhovo-Zuyevo, 2011), 126-130 (in Russian)
[10] G. P. Terekhov, V. E. Pavlovsky, “Control of the spherical robot by means of fly-wheels”, Keldysh Institute Preprints, 2017, 016, 31 pp. (in Russian) · doi:10.20948/prepr-2017-16
[11] S. A. Chaplygin, “On a ball”s rolling on a horizontal plane”, Mat. Sb., 24:1 (1903), 139-168 (in Russian)
[12] Y. Furuse, T. Hirano, M. Ishikawa, “Dynamical analysis of spherical mobile robot utilizing off-centered internal mass distribution”, IFAC-PapersOnLine, 48:13 (2015), 176-181 · doi:10.1016/j.ifacol.2015.10.235
[13] S. Gajbhiye, R. N. Banavar, Geometric approach to tracking and stabilization for a spherical robot actuated by internal rotors, 2015, arXiv:
[14] S. Gajbhiye, R. N. Banavar, “Geometric tracking control for a nonholonomic system: a spherical robot”, IFAC-PapersOnLine, 49:18 (2016), 820-825 · doi:10.1016/j.ifacol.2016.10.267
[15] M. Ishikawa, R. Kitayoshi, T. Sugie, “Volvot: A spherical mobile robot with eccentric twin rotors”, 2011 IEEE International Conference on Robotics and Biomimetics (2011), 1462-1467 · doi:10.1109/ROBIO.2011.6181496
[16] V. A. Joshi, R. N. Banavar, “Motion analysis of a spherical mobile robot”, Robotica, 27:3 (2009), 343-353 · doi:10.1017/S0263574708004748
[17] V. A. Joshi, R. N. Banavar, R. Hippalgaonkar, “Design and analysis of a spherical mobile robot”, Mechanism and Machine Theory, 45:2 (2010), 130-136 · Zbl 1379.70015 · doi:10.1016/j.mechmachtheory.2009.04.003
[18] A. A. Kilin, “The dynamics of Chaplygin ball: the qualitative and computer analysis”, Regular and Chaotic Dynamics, 6:3 (2001), 291-306 · Zbl 1074.70513 · doi:10.1070/RD2001v006n03ABEH000178
[19] A. A. Kilin, E. N. Pivovarova, “Chaplygin top with a periodic gyrostatic moment”, Russian Journal of Mathematical Physics, 25:4 (2018), 509-524 · Zbl 1435.70019 · doi:10.1134/S1061920818040088
[20] A. A. Kilin, E. N. Pivovarova, T. B. Ivanova, “Spherical robot of combined type: dynamics and control”, Regular and Chaotic Dynamics, 20:6 (2015), 716-728 · Zbl 1339.93081 · doi:10.1134/S1560354715060076
[21] T. W. U. Madhushani, D. H. S. Maithripala, J. V. Wijayakulasooriya, J. M. Berg, “Semi-globally exponential trajectory tracking for a class of spherical robots”, Automatica, 85 (2017), 327-338 · Zbl 1375.93036 · doi:10.1016/j.automatica.2017.07.060
[22] A. Morinaga, M. Svinin, M. Yamamoto, “A motion planning strategy for a spherical rolling robot driven by two internal rotors”, IEEE Transactions on Robotics, 30:4 (2014), 993-1002 · doi:10.1109/TRO.2014.2307112
[23] V. Muralidharan, A. D. Mahindrakar, “Geometric controllability and stabilization of spherical robot dynamics”, IEEE Transactions on Automatic Control, 60:10 (2015), 2762-2767 · Zbl 1360.70013 · doi:10.1109/TAC.2015.2404512
[24] T. Ohsawa, “Geometric kinematic control of a spherical rolling robot”, Journal of Nonlinear Science, 2019, 1-25 · Zbl 1475.70009 · doi:10.1007/s00332-019-09568-x
[25] T. Otani, T. Urakubo, S. Maekawa, H. Tamaki, Y. Tada, “Position and attitude control of a spherical rolling robot equipped with a gyro”, 9th IEEE International Workshop on Advanced Motion Control, 2006, 416-421 · doi:10.1109/AMC.2006.1631695
[26] M. Svinin, Sh. Hosoe, “Motion planning algorithms for a rolling sphere with limited contact area”, IEEE Transactions on Robotics, 24:3 (2008), 612-625 · doi:10.1109/TRO.2008.921568
[27] M. Svinin, A. Morinaga, M. Yamamoto, “An analysis of the motion planning problem for a spherical rolling robot driven by internal rotors”, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (2012), 414-419 · doi:10.1109/IROS.2012.6386077
[28] M. Svinin, A. Morinaga, M. Yamamoto, “On the dynamic model and motion planning for a class of spherical rolling robots”, 2012 IEEE International Conference on Robotics and Automation (2012), 3226-3231 · doi:10.1109/ICRA.2012.6224795
[29] M. Svinin, A. Morinaga, M. Yamamoto, “On the dynamic model and motion planning for a spherical rolling robot actuated by orthogonal internal rotors”, Regular and Chaotic Dynamics., 18:1-2 (2013), 126-143 · Zbl 1272.70049 · doi:10.1134/S1560354713010097
[30] Y. Sugiyama, S. Hirai, “Crawling and jumping by a deformable robot”, Experimental Robotics IX, Springer Tracts in Advanced Robotics, 21, eds. M. H. Ang, O. Khatib, Springer, Berlin, 2006, 281-291 · doi:10.1007/11552246_27
[31] Y. Tao, S. Hanxu, J. Qingxuan, Zh. Wei, “Path following control of a spherical robot rolling on an inclined plane”, Sensors and Transducers, 21 (2013), 42-47
[32] Movement of the ball with three internal flywheel engines in a straight line, Mathematical Modeling in UrFU
[33] Movement of the ball with three internal engines around the circle, Mathematical Modeling in UrFU
[34] Movement of the ball with three internal engines on the trajectory of “slalom”, Mathematical Modeling in UrFU
[35] Movement of the ball with three internal engines along the clothoid, Mathematical Modeling in UrFU
[36] Movement of the ball with three internal engines along the astroid, Mathematical Modeling in UrFU
[37] Animation of a ball moving on a plane without slipping
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.