×

Revisiting the Jones eigenproblem in fluid-structure interaction. (English) Zbl 1482.65208

This paper studies, theoretically and computationally, the Jones eigenvalue problem in Lipschitz domains. In the context of the previous result that rules out any Jones mode in most \(C^\infty\) domains and the intuition that the boundary condition may require the domain to possess significant geometric symmetries, the authors show that Jones modes do exist in a broad class of domains, i.e. Lipschitz domains. Exact Jones eigenmodes on rectangles are given. A conforming discretization of the continuous eigenvalue problem via Lagrange finite elements is proposed, analyzed, and implemented.

MSC:

65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74B05 Classical linear elasticity
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74S05 Finite element methods applied to problems in solid mechanics

Software:

FreeFem++

References:

[1] I. Azpiroz, Contribution à la Résolution Numérique de Problm̀es Inverses de Diffraction Élasto-acoustique, Ph.D. thesis, Thèse de doctorat dirigée par H. Barucq, J. Diaz et R. Djellouli, Mathèmatiques Appliquèes Pau, France, 2018, http://www.theses.fr/2018PAUU3004, .
[2] I. Babuska and J. Osborn, Eigenvalue problems, Handbook of Numerical Analysis, Vol. II, Handb. Numer. Anal., II, North-Holland, Amsterdam, 1991, pp. 641-787, https://doi.org/10.1016/S1570-8659(05)80042-0. · Zbl 0875.65087
[3] H. Barucq, R. Djellouli, and E. Estecahandy, On the existence and the uniqueness of the solution of a fluid-structure interaction scattering problem, J. Math. Anal. Appl., 412 (2014), pp. 571-588, https://doi.org/10.1016/j.jmaa.2013.10.081. · Zbl 1311.35205
[4] S. Bauer and D. Pauly, On Korn’s first inequality for tangential or normal boundary conditions with explicit constants, Math. Methods Appl. Sci., 39 (2016), pp. 5695-5704, https://doi.org/10.1002/mma.3954. · Zbl 1357.35008
[5] M. Costabel and M. Dauge, Computation of corner singularities in linear elasticity, in Boundary Value Problems and Integral Equations in Nonsmooth Domains (Luminy, 1993), Lecture Notes in Pure and Appl. Math. 167, Dekker, New York, 1995, pp. 59-68. · Zbl 0822.35040
[6] L. Desvillettes and C. Villani, On a variant of Korn’s inequality arising in statistical mechanics, ESAIM Control Optim. Calc. Var., 8 (2002), pp. 603-619, https://doi.org/10.1051/cocv:2002036. · Zbl 1092.82032
[7] E. Estecahandy, Contribution to the Mathematical Analysis and to the Numerical Solution of an Inverse Elasto-Acoustic Scattering Problem, Ph.D. thesis, Université de Pau et des Pays de l’Adour, Pau, France, 2013, https://tel.archives-ouvertes.fr/tel-00880628.
[8] G. N. Gatica, N. Heuer, and S. Meddahi, Coupling of mixed finite element and stabilized boundary element methods for a fluid-solid interaction problem in \(3\) D, Numer. Methods Partial Differential Equations, 30 (2014), pp. 1211-1233, https://doi.org/10.1002/num.21866. · Zbl 1308.74147
[9] G. N. Gatica, G. C. Hsiao, and S. Meddahi, A residual-based a posteriori error estimator for a two-dimensional fluid-solid interaction problem, Numer. Math., 114 (2009), pp. 63-106, https://doi.org/10.1007/s00211-009-0250-6. · Zbl 1247.76051
[10] G. N. Gatica, A. Márquez, and S. Meddahi, Analysis of the coupling of BEM, FEM and mixed-FEM for a two-dimensional fluid-solid interaction problem, Appl. Numer. Math., 59 (2009), pp. 2735-2750, https://doi.org/10.1016/j.apnum.2008.12.025. · Zbl 1171.76027
[11] P. Grisvard, Singularités en elasticité, Arch. Rational Mech. Anal., 107 (1989), pp. 157-180, https://doi.org/10.1007/BF00286498. · Zbl 0706.73013
[12] T. Hargé, Valeurs propres d’un corps élastique, C. R. Acad. Sci. Paris Sér. I Math., 311 (1990), pp. 857-859. · Zbl 0726.73018
[13] F. Hecht, New development in FreeFem++, J. Numer. Math., 20 (2012), pp. 251-266, https://doi.org/10.1515/jnum-2012-0013. · Zbl 1266.68090
[14] C. O. Horgan, Korn’s inequalities and their applications in continuum mechanics, SIAM Rev., 37 (1995), pp. 491-511, https://doi.org/10.1137/1037123. · Zbl 0840.73010
[15] G. C. Hsiao, R. E. Kleinman, and G. F. Roach, Weak solutions of fluid-solid interaction problems, Math. Nachr., 218 (2000), pp. 139-163, https://doi.org/10.1002/1522-2616(200010)218:1<139::AID-MANA139>3.3.CO;2-J. · Zbl 0963.35043
[16] G. C. Hsiao and N. Nigam, A transmission problem for fluid-structure interaction in the exterior of a thin domain, Adv. Differential Equations, 8 (2003), pp. 1281-1318. · Zbl 1096.74014
[17] G. C. Hsiao, T. Sánchez-Vizuet, and F.-J. Sayas, Boundary and coupled boundary-finite element methods for transient wave-structure interaction, IMA J. Numer. Anal., 37 (2017), pp. 237-265, https://doi.org/10.1093/imanum/drw009. · Zbl 1433.74114
[18] T. Huttunen, J. P. Kaipio, and P. Monk, An ultra-weak method for acoustic fluid-solid interaction, J. Comput. Appl. Math., 213 (2008), pp. 166-185, https://doi.org/10.1016/j.cam.2006.12.030. · Zbl 1182.76949
[19] D. S. Jones, Low-frequency scattering by a body in lubricated contact, Quart. J. Mech. Appl. Math., 36 (1983), pp. 111-138, https://doi.org/10.1093/qjmam/36.1.111. · Zbl 0552.73023
[20] R. J. Knops and L. E. Payne, Uniqueness Theorems in Linear Elasticity, Springer Tracts in Natural Philosophy, Vol. 19, Springer-Verlag, New York, Berlin, 1971. · Zbl 0224.73016
[21] H. Lamb, On the vibrations of an elastic sphere, Proc. Lond. Math. Soc., 13 (1881/82), pp. 189-212, https://doi.org/10.1112/plms/s1-13.1.189. · JFM 14.0823.01
[22] C. J. Luke and P. A. Martin, Fluid-solid interaction: Acoustic scattering by a smooth elastic obstacle, SIAM J. Appl. Math., 55 (1995), pp. 904-922, https://doi.org/10.1137/S0036139993259027. · Zbl 0832.73045
[23] P. A. Martin, Shear-wave resonances in a fluid-solid-solid layered structure, Wave Motion, 51 (2014), pp. 1161-1169, https://doi.org/10.1016/j.wavemoti.2014.07.002. · Zbl 1456.35133
[24] S. Meddahi, D. Mora, and R. Rodríguez, Finite element spectral analysis for the mixed formulation of the elasticity equations, SIAM J. Numer. Anal., 51 (2013), pp. 1041-1063, https://doi.org/10.1137/120863010. · Zbl 1268.74011
[25] S. Meddahi and F.-J. Sayas, Analysis of a new BEM-FEM coupling for two-dimensional fluid-solid interaction, Numer. Methods Partial Differential Equations, 21 (2005), pp. 1017-1042, https://doi.org/10.1002/num.20074. · Zbl 1078.74054
[26] D. Natroshvili, G. Sadunishvili, and I. Sigua, Some remarks concerning Jones eigenfrequencies and Jones modes, Georgian Math. J., 12 (2005), pp. 337-348. · Zbl 1138.74327
[27] S. Nicaise, About the Lamé system in a polygonal or a polyhedral domain and a coupled problem between the Lamé system and the plate equation. I. Regularity of the solutions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 19 (1992), pp. 327-361, http://www.numdam.org/item?id=ASNSP_1992_4_19_3_327_0. · Zbl 0782.73041
[28] A. Rössle, Corner singularities and regularity of weak solutions for the two-dimensional Lamé equations on domains with angular corners, J. Elasticity, 60 (2000), pp. 57-75, https://doi.org/10.1023/A:1007639413619. · Zbl 0976.74019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.