×

Models for damped water waves. (English) Zbl 1431.35126

Summary: In this paper we derive some new weakly nonlinear asymptotic models describing viscous waves in deep water with or without surface tension effects. These asymptotic models take into account several different dissipative effects and are obtained from the free boundary problems formulated in the works of F. Dias et al. [Phys. Lett., A 372, No. 8, 1297–1302 (2008; Zbl 1217.76018)], L. Jiang et al. [J. Fluid Mech. 329, 275–307 (1996; Zbl 0900.76014)], and G. Wu et al. [J. Fluid Mech. 556, 45–54 (2006; Zbl 1147.76031)].

MSC:

35Q35 PDEs in connection with fluid mechanics
35R35 Free boundary problems for PDEs
35Q31 Euler equations
35B40 Asymptotic behavior of solutions to PDEs
76D33 Waves for incompressible viscous fluids

References:

[1] B. Akers and P. A. Milewski, Dynamics of three-dimensional gravity-capillary solitary waves in deep water, SIAM J. Appl. Math., 70 (2010), pp. 2390-2408. · Zbl 1385.76006
[2] B. Akers and D. P. Nicholls, Traveling waves in deep water with gravity and surface tension, SIAM J. Appl. Math., 70 (2010), pp. 2373-2389. · Zbl 1385.76004
[3] D. Ambrose, J. Bona, and D. Nicholls, Well-posedness of a model for water waves with viscosity, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), pp. 1113-1137. · Zbl 1238.35093
[4] D. M. Ambrose, J. L. Bona, and D. P. Nicholls, On ill-posedness of truncated series models for water waves, R. Soc. Lond. Proc. A Math. Phys. Eng. Sci., 470 (2014), 20130849. · Zbl 1371.35210
[5] J. Boussinesq, Lois de l’extinction de la houle en haute mer, CR Acad. Sci. Paris, 121 (1895), pp. 15-20. · JFM 26.0886.02
[6] A. Cheng, R. Granero-Belinchón, S. Shkoller, and J. Wilkening, Rigorous Asymptotic Models of Water Waves, Water Waves, 1 (2019), pp. 71-130. · Zbl 1451.76022
[7] D. Coutand and S. Shkoller, Well-posedness of the free-surface incompressible Euler equations with or without surface tension, J. Amer. Math. Soc., 20 (2007), pp. 829-930. · Zbl 1123.35038
[8] W. Craig, P. Guyenne, and C. Sulem, Water waves over a random bottom, J. Fluid Mech., 640 (2009), pp. 79-107. · Zbl 1183.76629
[9] W. Craig and C. Sulem, Numerical simulation of gravity waves, J. Comput. Phys., 108 (1993), pp. 73-83. · Zbl 0778.76072
[10] F. Dias, A. I. Dyachenko, and V. E. Zakharov, Theory of weakly damped free-surface flows: A new formulation based on potential flow solutions, Phys. Lett. A, 372 (2008), pp. 1297-1302. · Zbl 1217.76018
[11] D. Dutykh, Visco-potential free-surface flows and long wave modelling, Eur. J. Mech. B Fluids, 28 (2009), pp. 430-443. · Zbl 1167.76323
[12] D. Dutykh, Group and phase velocities in the free-surface visco-potential flow: New kind of boundary layer induced instability, Phys. Lett. A, 373 (2009), pp. 3212-3216. · Zbl 1233.76043
[13] D. Dutykh and F. Dias, Dissipative Boussinesq equations, C. R. Mec., 335 (2007), pp. 559-583. · Zbl 1131.76022
[14] D. Dutykh and O. Goubet, Derivation of dissipative Boussinesq equations using the Dirichlet-to-Neumann operator approach, Math. Comput. Simulation, 127 (2016), pp. 80-93. · Zbl 1520.35118
[15] D. Dutykh and F. Dias, Viscous potential free-surface flows in a fluid layer of finite depth, C. R. Math., 345 (2007), pp. 113-118. · Zbl 1117.76023
[16] R. Granero-Belinchón and S. Scrobogna, Asymptotic models for free boundary flow in porous media, Phys. D, 392 (2019), pp. 1-16. · Zbl 1451.76120
[17] R. Granero-Belinchón and S. Scrobogna, On an Asymptotic Model for Free Boundary Darcy Flow in Porous Media, preprint, https://arxiv.org/abs/1810.11798. · Zbl 1450.35298
[18] R. Granero-Belinchón and S. Shkoller, A model for Rayleigh-Taylor mixing and interface turn-over, Multiscale Model. Simul., 15 (2017), pp. 274-308. · Zbl 1362.76025
[19] P. Guyenne and E. I. Parau, Numerical simulation of solitary-wave scattering and damping in fragmented sea ice, in the 27th International Ocean and Polar Engineering Conference, International Society of Offshore and Polar Engingeers, Cupertino, CA, 2017, pp. 373-380.
[20] M. Hunt and D. Dutykh, Visco-potential flows in electrohydrodynamics, Phys. Lett. A, 378 (2014), pp. 1721-1726. · Zbl 1331.76129
[21] L. Jiang, C.-L. Ting, M. Perlin, and W. W. Schultz, Moderate and steep Faraday waves: Instabilities, modulation and temporal asymmetries, J. Fluid Mech., 329 (1996), pp. 275-307. · Zbl 0900.76014
[22] D. D. Joseph and J. Wang, The dissipation approximation and viscous potential flow, J. Fluid Mech., 505 (2004), pp. 365-377. · Zbl 1062.76053
[23] M. Kakleas and D. P. Nicholls, Numerical simulation of a weakly nonlinear model for water waves with viscosity, J. Sci. Comput., 42 (2010), pp. 274-290. · Zbl 1203.76026
[24] C. Kharif, R. A. Kraenkel, M. A. Manna, and R. Thomas, The modulational instability in deep water under the action of wind and dissipation, J. Fluid Mech., 664 (2010), pp. 138-149. · Zbl 1221.76089
[25] C. Kharif, C. Skandrani, and J. Poitevin, The frequency down-shift phenomenon, in Mathematical Problems in the Theory of Water Waves: A Workshop on the Problems in the Theory of Nonlinear Hydrodynamic Waves, 1995, Luminy, France, Contemp. Math. Vol. 200, American Mathematical Society, Providence, RI, 1996, pp. 157-171. · Zbl 0861.76020
[26] H Lamb, Hydrodynamics, Cambridge University Press, Cambridge, 1932. · JFM 58.1298.04
[27] D. Lannes, The Water Waves Problem, Math. Surveys Monogr. 188, American Mathematical Society, Providence, RI, 2013. · Zbl 1410.35003
[28] S. Liu and D. M. Ambrose, Sufficiently strong dispersion removes ill-posedness in truncated series models of water waves, Discrete Contin. Dyn. Syst. A, 39 (2019), pp. 3123-3147. · Zbl 1415.76074
[29] M. S. Longuet-Higgins, Theory of weakly damped Stokes waves: A new formulation and its physical interpretation, J. Fluid Mech., 235 (1992), pp. 319-324. · Zbl 0850.76158
[30] Y. Matsuno, Nonlinear evolutions of surface gravity waves on fluid of finite depth, Phys. Rev. Lett., 69 (1992), pp. 609-611. · Zbl 0968.76516
[31] Y. Matsuno, Nonlinear evolution of surface gravity waves over an uneven bottom, J. Fluid Mech., 249 (1993), pp. 121-133. · Zbl 0783.76015
[32] Y. Matsuno, Two-dimensional evolution of surface gravity waves on a fluid of arbitrary depth, Phys. Rev. E (3), 47 (1993), 4593.
[33] D. M. Milder, An improved formalism for wave scattering from rough surfaces, J. Acoust. Soc. Amer., 89 (1991), pp. 529-541.
[34] D. M. Milder and H. T. Sharp, An improved formalism for rough-surface scattering. II: Numerical trials in three dimensions, J. Acoust. Soc. Amer., 91 (1992), pp. 2620-2626.
[35] M. Ngom and D. P. Nicholls, Well-posedness and analyticity of solutions to a water wave problem with viscosity, J. Differential Equations, 265 (2018), pp. 5031-5065. · Zbl 1406.35293
[36] R. Ramani and S. Shkoller, A Multiscale Model for Rayleigh-Taylor and Richtmyer-Meshkov Instabilities, preprint, arXiv:1904.04935, 2019. · Zbl 1453.76140
[37] K. D. Ruvinsky, F. I. Feldstein, and G. I. Freidman, Numerical simulations of the quasi-stationary stage of ripple excitation by steep gravity-capillary waves, J. Fluid Mech., 230 (1991), pp. 339-353. · Zbl 0728.76018
[38] K. D. Ruvinsky and G. I. Freidman, Improvement of the first Stokes method for the investigation of finite-amplitude potential gravity-capillary waves, in IX All-Union Symp. on Diffraction and Propagation Waves, Tbilisi: Theses Rep., 2 (1985), pp. 22-25.
[39] K. D. Ruvinsky and G. I. Freidman, The fine structure of strong gravity-capillary waves, in Nonlinear Waves: Structures and Bifurcations, A. V. Gaponov-Grekhov and M. I. Rabinovich, eds., Nauka, Moscow, 1987, pp. 304-326.
[40] G. G. Stokes, On the Theory of Oscillatory Waves, Cambridge Library Collection - Mathematics, Vol. 1, Cambridge University Press, Cambridge, 1847. · JFM 01.0339.03
[41] J. Touboul and C. Kharif, Nonlinear evolution of the modulational instability under weak forcing and damping, Nat. Hazards Earth Syst. Sci., 10 (2010), pp. 2589-2597.
[42] J. Wang and D. D. Joseph, Purely irrotational theories of the effect of the viscosity on the decay of free gravity waves, J. Fluid Mech., 559 (2006), pp. 461-472. · Zbl 1095.76017
[43] G. Wu, Y. Liu, and D. K. P. Yue, A note on stabilizing the Benjamin-Feir instability, J. Fluid Mech., 556 (2006), pp. 45-54. · Zbl 1147.76031
[44] T. Y. Wu, Long waves in ocean and coastal waters, J. Engrg. Mech., 107 (1981), pp. 501-522.
[45] N. J. Zabusky and C. J. Galvin, Shallow-water waves, the Korteweg-DeVries equation and solitons, J. Fluid Mech., 47 (1971), pp. 811-824.
[46] V. E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys., 9 (1968), pp. 190-194.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.