×

Towards probabilistic partial metric spaces: diagonals between distance distributions. (English) Zbl 1423.54020

Summary: The quantale of distance distributions is of fundamental importance for understanding probabilistic metric spaces as enriched categories. Motivated by the categorical interpretation of partial metric spaces, we are led to investigate the quantaloid of diagonals between distance distributions, which is expected to establish the categorical foundation of probabilistic partial metric spaces. Observing that the quantale of distance distributions w.r.t. an arbitrary continuous t-norm is non-divisible, we precisely characterize diagonals between distance distributions, and prove that one-step functions are the only distance distributions on which the set of diagonals coincides with the generated down set.

MSC:

54A40 Fuzzy topology
54E70 Probabilistic metric spaces
06F07 Quantales

References:

[1] Amer, F. J., Fuzzy partial metric spaces, (Anastassiou, G. A.; Duman, O., Computational Analysis: AMAT, Ankara, May 2015 Selected Contributions (2016), Springer: Springer Cham), 153-161 · Zbl 1355.54006
[2] Bělohlávek, R., Concept lattices and order in fuzzy logic, Ann. Pure Appl. Log., 128, 1-3, 277-298 (2004) · Zbl 1060.03040
[3] Bukatin, M.; Kopperman, R.; Matthews, S. G.; Pajoohesh, H., Partial metric spaces, Am. Math. Mon., 116, 8, 708-718 (2009) · Zbl 1229.54037
[4] Chai, Y., A note on the probabilistic quasi-metric spaces, J. Sichuan Univ. (Nat. Sci. Ed.), 46, 3, 543-547 (2009) · Zbl 1212.54096
[5] Clementino, M. M.; Hofmann, D., The rise and fall of \(V\)-functors, Fuzzy Sets Syst., 321, 29-49 (2017) · Zbl 1390.18019
[6] Denniston, J. T.; Melton, A.; Rodabaugh, S. E., Enriched categories and many-valued preorders: categorical, semantical, and topological perspectives, Fuzzy Sets Syst., 256, 4-56 (2014) · Zbl 1335.68305
[7] Faucett, W. M., Compact semigroups irreducibly connected between two idempotents, Proc. Am. Math. Soc., 6, 5, 741-747 (1955) · Zbl 0065.25204
[8] George, A.; Veeramani, P., On some results in fuzzy metric spaces, Fuzzy Sets Syst., 64, 3, 395-399 (1994) · Zbl 0843.54014
[9] Gutiérrez García, J.; Höhle, U.; Kubiak, T., Tensor products of complete lattices and their application in constructing quantales, Fuzzy Sets Syst., 313, 43-60 (2017) · Zbl 1393.06003
[10] Gutiérrez García, J.; Lai, H.; Shen, L., Fuzzy Galois connections on fuzzy sets, Fuzzy Sets Syst., 352, 26-55 (2018) · Zbl 1397.03075
[11] Hájek, P., Metamathematics of Fuzzy Logic, Trends in Logic, vol. 4 (1998), Springer: Springer Dordrecht · Zbl 0937.03030
[12] Hofmann, D.; Reis, C. D., Probabilistic metric spaces as enriched categories, Fuzzy Sets Syst., 210, 1-21 (2013) · Zbl 1262.18007
[13] (Hofmann, D.; Seal, G. J.; Tholen, W., Monoidal Topology: A Categorical Approach to Order, Metric, and Topology. Monoidal Topology: A Categorical Approach to Order, Metric, and Topology, Encyclopedia of Mathematics and Its Applications, vol. 153 (2014), Cambridge University Press: Cambridge University Press Cambridge) · Zbl 1297.18001
[14] Hofmann, D.; Stubbe, I., Topology from enrichment: the curious case of partial metrics (2016)
[15] Höhle, U., Commutative, residuated l-monoids, (Höhle, U.; Klement, E. P., Non-classical Logics and Their Applications to Fuzzy Subsets: A Handbook of the Mathematical Foundations of Fuzzy Set Theory. Non-classical Logics and Their Applications to Fuzzy Subsets: A Handbook of the Mathematical Foundations of Fuzzy Set Theory, Theory and Decision Library, vol. 32 (1995), Springer: Springer Berlin-Heidelberg), 53-105 · Zbl 0838.06012
[16] Höhle, U., Many-valued preorders I: the basis of many-valued mathematics, (Magdalena, L.; Verdegay, J. L.; Esteva, F., Enric Trillas: A Passion for Fuzzy Sets: A Collection of Recent Works on Fuzzy Logic. Enric Trillas: A Passion for Fuzzy Sets: A Collection of Recent Works on Fuzzy Logic, Studies in Fuzziness and Soft Computing, vol. 322 (2015), Springer: Springer Cham), 125-150 · Zbl 1383.06001
[17] Höhle, U.; Kubiak, T., A non-commutative and non-idempotent theory of quantale sets, Fuzzy Sets Syst., 166, 1-43 (2011) · Zbl 1226.06011
[18] Klement, E. P.; Mesiar, R.; Pap, E., Triangular Norms, Trends in Logic, vol. 8 (2000), Springer: Springer Dordrecht · Zbl 0972.03002
[19] Klement, E. P.; Mesiar, R.; Pap, E., Triangular norms. Position paper I: basic analytical and algebraic properties, Fuzzy Sets Syst., 143, 1, 5-26 (2004) · Zbl 1038.03027
[20] Klement, E. P.; Mesiar, R.; Pap, E., Triangular norms. Position paper II: general constructions and parameterized families, Fuzzy Sets Syst., 145, 3, 411-438 (2004) · Zbl 1059.03012
[21] Klement, E. P.; Mesiar, R.; Pap, E., Triangular norms. Position paper III: continuous t-norms, Fuzzy Sets Syst., 145, 3, 439-454 (2004) · Zbl 1059.03013
[22] Kramosil, I.; Michálek, J., Fuzzy metrics and statistical metric spaces, Kybernetika, 11, 5, 336-344 (1975) · Zbl 0319.54002
[23] Lai, H.; Zhang, D., Fuzzy preorder and fuzzy topology, Fuzzy Sets Syst., 157, 14, 1865-1885 (2006) · Zbl 1118.54008
[24] Lai, H.; Zhang, D., Concept lattices of fuzzy contexts: formal concept analysis vs. rough set theory, Int. J. Approx. Reason., 50, 5, 695-707 (2009) · Zbl 1191.68658
[25] Lawvere, F. W., Metric spaces, generalized logic and closed categories, Rend. Semin. Mat. Fis. Milano, XLIII, 135-166 (1973) · Zbl 0335.18006
[26] Matthews, S. G., Partial metric topology, (Annals of the New York Academy of Sciences, vol. 728 (1) (1994)), 183-197 · Zbl 0911.54025
[27] Menger, K., Statistical metrics, Proc. Natl. Acad. Sci. USA, 28, 12, 535-537 (1942) · Zbl 0063.03886
[28] Mostert, P. S.; Shields, A. L., On the structure of semigroups on a compact manifold with boundary, Ann. Math., 65, 1, 117-143 (1957) · Zbl 0096.01203
[29] Pu, Q.; Zhang, D., Preordered sets valued in a GL-monoid, Fuzzy Sets Syst., 187, 1, 1-32 (2012) · Zbl 1262.18008
[30] Schweizer, B.; Sklar, A., Probabilistic Metric Spaces, North Holland Series in Probability and Applied Mathematics (1983), Elsevier Science Publishing Company: Elsevier Science Publishing Company New York · Zbl 0546.60010
[31] Sedghi, S.; Shobkolaei, N.; Altun, I., Partial fuzzy metric space and some fixed point results, Commun. Math., 23, 2, 131-142 (2015) · Zbl 1337.54047
[32] Shen, L., \(Q\)-closure spaces, Fuzzy Sets Syst., 300, 102-133 (2016) · Zbl 1378.54015
[33] Shen, L.; Zhang, D., The concept lattice functors, Int. J. Approx. Reason., 54, 1, 166-183 (2013) · Zbl 1288.06013
[34] Shen, L.; Zhang, D., Formal concept analysis on fuzzy sets, (Proceedings of the 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS) (2013)), 215-219
[35] Stubbe, I., An introduction to quantaloid-enriched categories, Fuzzy Sets Syst., 256, 95-116 (2014) · Zbl 1335.18002
[36] Tao, Y.; Lai, H.; Zhang, D., Quantale-valued preorders: globalization and cocompleteness, Fuzzy Sets Syst., 256, 236-251 (2014) · Zbl 1337.06010
[38] Yue, Y., Separated \(\Delta^+\)-valued equivalences as probabilistic partial metric spaces, J. Intell. Fuzzy Syst., 28, 6, 2715-2724 (2015) · Zbl 1354.54029
[39] Yue, Y.; Gu, M., Fuzzy partial (pseudo-)metric spaces, J. Intell. Fuzzy Syst., 27, 3, 1153-1159 (2014) · Zbl 1305.54018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.