×

A model for a network of conveyor belts with discontinuous speed and capacity. (English) Zbl 1423.90077

Summary: We introduce a macroscopic model for a network of conveyor belts with various speeds and capacities. In a different way from traffic flow models, the product densities are forced to move with a constant velocity unless they reach a maximal capacity and start to queue. This kind of dynamics is governed by scalar conservation laws consisting of a discontinuous flux function. We define appropriate coupling conditions to get well-posed solutions at intersections and provide a detailed description of the solution. Some numerical simulations are presented to illustrate and confirm the theoretical results for different network configurations.

MSC:

90B30 Production models
35L65 Hyperbolic conservation laws
65M25 Numerical aspects of the method of characteristics for initial value and initial-boundary value problems involving PDEs

References:

[1] D. Armbruster; S. Göttlich; M. Herty, A scalar conservation law with discontinuous flux for supply chains with finite buffers, SIAM J. Appl. Math., 71, 1070-1087 (2011) · Zbl 1231.90154 · doi:10.1137/100809374
[2] F. Camilli; A. Festa; S. Tozza, A discrete hughes model for pedestrian flow on graphs, Netw. Heterog. Media, 12, 93-112 (2017) · Zbl 1357.90029 · doi:10.3934/nhm.2017004
[3] C. d’Apice, S. Göttlich, M. Herty and B. Piccoli, Modeling, Simulation, and Optimization of Supply Chains: A Continuous Approach, SIAM, 2010. · Zbl 1205.90003
[4] J.-P. Dias; M. Figueira, On the riemann problem for some discontinuous systems of conservation laws describing phase transitions, Commun. Pure Appl. Math., 3, 53-58 (2004) · Zbl 1049.35128 · doi:10.3934/cpaa.2004.3.53
[5] J.-P. Dias; M. Figueira; J.-F. Rodrigues, Solutions to a scalar discontinuous conservation law in a limit case of phase transitions, J. Math. Fluid Mech., 7, 153-163 (2005) · Zbl 1065.35184 · doi:10.1007/s00021-004-0113-y
[6] U. S. Fjordholm; S. Mishra; E. Tadmor, Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws, SIAM J. Numer. Anal., 50, 544-573 (2012) · Zbl 1252.65150 · doi:10.1137/110836961
[7] M. Garavello, K. Han and B. Piccoli, Models for Vehicular Traffic on Networks, volume 9, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2016. · Zbl 1351.90045
[8] M. Garavello; R. Natalini; B. Piccoli; A. Terracina, Conservation laws with discontinuous flux, Netw. Heterog. Media, 2, 159-179 (2007) · Zbl 1142.35511 · doi:10.3934/nhm.2007.2.159
[9] M. Garavello and B. Piccoli, Traffic Flow on Networks, volume 1, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006. · Zbl 1136.90012
[10] S. Göttlich; A. Klar; P. Schindler, Discontinuous conservation laws for production networks with finite buffers, SIAM J. Appl. Math., 73, 1117-1138 (2013) · Zbl 1273.90074 · doi:10.1137/120882573
[11] M. Herty; C. Joerres; B. Piccoli, Existence of solution to supply chain models based on partial differential equation with discontinuous flux function, J. Math. Anal. Appl., 401, 510-517 (2013) · Zbl 1307.90062 · doi:10.1016/j.jmaa.2012.12.002
[12] J. D. Towers, Convergence of a difference scheme for conservation laws with a discontinuous flux, SIAM J. Numer. Anal., 38, 681-698 (2000) · Zbl 0972.65060 · doi:10.1137/S0036142999363668
[13] J. K. Wiens; J. M. Stockie; J. F. Williams, Riemann solver for a kinematic wave traffic model with discontinuous flux, J. Comput. Phys., 242, 1-23 (2013) · Zbl 1302.65206 · doi:10.1016/j.jcp.2013.02.024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.