×

Construction of dual wavelet frame pairs and signal recovery. (English) Zbl 1440.42142

Summary: Signal processing is an enabling technology that helps us to denote any operation which modifies or analyzes the information contained in a signal. In this paper, we first decompose the original signal by a wavelet packet frame and analyze the coefficients. Then, by using dual wavelet frames, we reconstruct the original signal. In this reconstruction, the standard choice for duals which plays a key role is the canonical dual. Our aim is to develop new duals to obtain more accurate results. To this end, we consider wavelet frames which Fourier transform of generators form a partition of unity. Then we introduce several explicit duals for them and compare the advantage of these duals in signal processing. This indicates that we may obtain more reliable estimates by alternate duals.

MSC:

42C15 General harmonic expansions, frames
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
94A12 Signal theory (characterization, reconstruction, filtering, etc.)
Full Text: DOI

References:

[1] Allabakash, S., Yasodha, P., Venkatramana Reddy, S., Srinivasulu, P.: Wavelet transform-based methods for removal of ground clutter and denoising the radar wind profiler data. Signal Process. IET 9, 440-448 (2015) · doi:10.1049/iet-spr.2014.0312
[2] Arefijamaal, A., Zekaee, E.: Signal processing by alternate dual Gabor frames. Appl. Comput. Harmon. Anal. 35, 535-540 (2013) · Zbl 1293.42030 · doi:10.1016/j.acha.2013.06.001
[3] Arefijamaal, A., Zekaee, E.: Image processing by alternate dual Gabor frames. Bull. Iran. Math. Soc. 42(6), 1305-1314 (2016) · Zbl 1373.42032
[4] Casazza, P.G., Kutyniok, G., Lammers, M.C.: Duality principles in frame theory. Fourier Anal. Appl. 10(4), 383-408 (2004) · Zbl 1058.42020 · doi:10.1007/s00041-004-3024-7
[5] Chen, Y., Zhang, Y., Hu, H., Ling, H.: A novel gray image watermarking scheme. J. Softw. 6(5), 849-856 (2011)
[6] Christensen, O.: Frames and Bases. An Introductory Course. Birkhäuser, Boston (2008) · Zbl 1152.42001
[7] Christensen, O.: Pairs of dual Gabor frames with compact support and desired frequency localization. Appl. Comput. Harmon. Anal. 20, 403-410 (2006) · Zbl 1106.42030 · doi:10.1016/j.acha.2005.10.003
[8] Christensen, O.: Time-frequency analysis and its applications in denoising. Department of informatics, University of Bergan, Thesis (2002)
[9] Christensen, O., Kim, R.Y.: On dual Gabor frame pairs generated by polynomials. Fourier Anal. Appl. 16, 11-16 (2010) · Zbl 1210.42048 · doi:10.1007/s00041-009-9074-0
[10] Chui, C.K., Shi, X.: Orthonormal wavelets and tight frames with arbitrary real dilations. Appl. Comput. Harmon. Anal. 9(3), 243-264 (2000) · Zbl 0967.42023 · doi:10.1006/acha.2000.0316
[11] Daubechies, I.: The wavelet transform, time frequency localization and signal analysis. IEEE Trans. Inf. Theory 36(5), 961-1005 (1990) · Zbl 0738.94004 · doi:10.1109/18.57199
[12] Daubechies, I., Grossmann, A., Meyer, Y.: Painless nonorthogonal expansions. J. Math. Phys. 27, 1271-1283 (1986) · Zbl 0608.46014 · doi:10.1063/1.527388
[13] Deng, L., Yu, C.L., Chakrabarti, C., Kim, J., Narayanan, V.: Efficient image reconstruction using partial 2D Fourier transform. In: Proceedings of the IEEE Workshop on Signal Processing Systems, pp. 49-54. SiPS, Washington, DC Metro Area, USA (2008)
[14] Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation via wavelet shrinkage. Biometrika 81(3), 425-455 (1994) · Zbl 0815.62019 · doi:10.1093/biomet/81.3.425
[15] Donoho, D.L., Johnstone, I.M.: Adapting to unknown smoothness via wavelet shrinkage. Am. Stat. Assoc. 90(432), 1200-1224 (1995) · Zbl 0869.62024 · doi:10.1080/01621459.1995.10476626
[16] Feichtinger, H.G., Strohmer, T.: Gabor Analysis and Algorithms: Theory and Applications. Birkhäuser, Boston (1997) · Zbl 0890.42004
[17] Gautier, M., Lienard, J.: Efficient wavelet packet modulation for wireless communication. In: Proceedings of the 3rd Advanced International Conference, pp. 1-19. France Telecom R and D, France (2007)
[18] Găianu, M., Onchis, D.M.: Face and marker detection using Gabor frames on GPUs. Signal Process. 96, 90-93 (2014) · doi:10.1016/j.sigpro.2013.06.029
[19] He, J., Li, Z., Qian, H.: Cryptography based on spatiotemporal chaos system and multiple maps. J. Softw. 5(4), 421-428 (2010) · doi:10.4304/jsw.5.4.421-428
[20] Heil, C.E., Walnut, D.F.: Continuous and discrete wavelet transforms. SIAM Rev. 31, 628-666 (1989) · Zbl 0683.42031 · doi:10.1137/1031129
[21] Herman, G.T.: Fundamentals of Computerized Tomography: Image Reconstruction from Projection, 2nd edn. Springer, New York (2009) · Zbl 1280.92002 · doi:10.1007/978-1-84628-723-7
[22] Huang, F., Qu, X.: Design of image encryption algorithm based on compound two-dimensional maps. J. Softw. 6(10), 1953-1960 (2011)
[23] Janssen, A.J.E.M.: Duality and biorthogonality for Weyl-Heisenberg frames. Fourier Anal. Appl. 1(4), 403-436 (1995) · Zbl 0887.42028 · doi:10.1007/s00041-001-4017-4
[24] Lemvig, J.: Constructing pairs of dual bandlimited framelets with desired time localization. Adv. Comput. Math. 30, 231-248 (2009) · Zbl 1166.42020 · doi:10.1007/s10444-008-9066-7
[25] Mallat, S.G.: A wavelet tour of signal processing. Academic Press, San Diego (1999) · Zbl 0998.94510
[26] Porter, R., Canagarajah, N.: Robust rotation-invariant texture classification: wavelet, Gabor filter and GMRF based schemes. IEE Proc. Vis. Image Signal Process. 144(3), 180-188 (1997) · doi:10.1049/ip-vis:19971182
[27] Ron, A., Shen, Z.: Weyl-Heisenberg frames and Riesz bases in \[L^2(\mathbb{R}^d )\] L2(Rd). Duke Math. J. 89, 237-282 (1997) · Zbl 0892.42017 · doi:10.1215/S0012-7094-97-08913-4
[28] Tong, C.S., Leung, K.T.: Super-resolution reconstruction based on linear interpolation of wavelet coefficients. Multidimens. Syst. Signal Process. 18(2-3), 153-171 (2007) · Zbl 1124.94006 · doi:10.1007/s11045-007-0023-2
[29] Thamarai, P., Adalarasu, K.: Denoising of EEG, ECG and PPG signals using wavelet transform. J. Pharm. Sci. and Res. 10(1), 156-161 (2018)
[30] Verma, R., Mahrishi, R., Srivastava, G. K., Siddavatam, R.: A novel image reconstruction using second generation wavelets. In: IEEE International Conference on Advances in Recent Technologies in Communication and Computing, pp. 509-513. IEEE Press, Kerala (2009)
[31] Wexler, J., Raz, S.: Discrete Gabor expansions. Signal Process. 21, 207-221 (1990) · doi:10.1016/0165-1684(90)90087-F
[32] Yang, X., Min, J., Shi, Y.: Parametrisation construction frame of lifting scheme. IET Signal Process. 5, 1-15 (2011) · doi:10.1049/iet-spr.2009.0294
[33] Zhang, Y., Yuanyuan, W., Chen, Z.: Efficient discrete cosine transform model-based algorithm for photoacoustic image reconstruction. J. Biomed. Opt. 18(6), 066008(1)-066008(9) (2013) · doi:10.1117/1.JBO.18.6.066008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.