×

Numerical solution of high order linear complex differential equations via complex operational matrix method. (English) Zbl 1441.65058

The authors consider a higher order linear nonhomogeneous differential equation having analytic coefficients in a rectangle in the complex plane \[ \sum_{k=0}^m\omega_k(z)y^{(k)}(z)=g(z), \] with initial conditions \[ \sum_{n=0}^{m-1}e_{nk}y^{(k)}(0)=\lambda_{k},\quad k=0, 1, \dots, m-1, \] where \(e_{nk}\) and \(\lambda_{k}\) are constants. By means of the method of orthonormal Bernstein polynomials, they obtain a complex operational matrix of differentiation.
The advantage of the proposed method is that complex differential equations reduce to a linear system of algebraic equations which can be solved by using an appropriate iterative methods. Further, the authors discuss convergence analysis of the proposed method and they establish an upper error bound under weak assumptions. Some numerical examples of second order cases are given.

MSC:

65L05 Numerical methods for initial value problems involving ordinary differential equations
65L20 Stability and convergence of numerical methods for ordinary differential equations
34M03 Linear ordinary differential equations and systems in the complex domain
Full Text: DOI

References:

[1] Ince, E.L.: Ordinary Differential Equations. Dover Publications, Mineola, New York (1958) · Zbl 0082.06701
[2] Ishisaki, K., Tohge, K.: On the complex oscillation of some linear differential equations. J. Math. Anal. Appl. 206, 503-517 (1997) · Zbl 0877.34009 · doi:10.1006/jmaa.1997.5247
[3] Barsegian, G.A.: Gamma-Lines: On the Geometry of Real and Complex Functions. Taylor and Francis, London (2002) · Zbl 1059.30023
[4] Lingyun, G.: The growth of solutions of systems of complex nonlinear algebraic differential equations. Acta Math. Sci. 30B, 932-938 (2010) · Zbl 1240.34454 · doi:10.1016/S0252-9602(10)60090-2
[5] Prokhorov, V.A.: On best rational approximation of analytic functions. J. Approx. Theory. 133, 284-296 (2005) · Zbl 1073.30029 · doi:10.1016/j.jat.2004.12.007
[6] Cveticanin, L.: Analytic approach for the solution of the complex-valued strong non-linear differential equation of Duffing type. Phys. A 297, 348-360 (2001) · Zbl 0969.34501 · doi:10.1016/S0378-4371(01)00228-X
[7] Sezer, M., Yalcinas, S.: A collocation method to solve higher order linear complex differential equations in rectangular domains. Numer. Methods Partial Differ. Equ. 26, 596-611 (2010) · Zbl 1189.65152
[8] Sezer, M., Gulsu, M.: Approximate solution of complex differential equations for a rectangular domain with Taylor collocation method. Appl. Math. Comput. 177, 844-851 (2006) · Zbl 1096.65075
[9] Yüzbaşı, Ş., Sezer, M.: A collocation method to find solutions of linear complex diferential equations in circular domains. Appl. Math. Comput. 219, 10610-10626 (2013) · Zbl 1298.65117
[10] Mirzaee, F., Bimesl, S., Tohidi, E.: A new complex-valued method and its applications in solving differential equations. Sci. Iran. 22, 2424-2431 (2015)
[11] Rostamy, D., Jafari, H., Alipour, M., Khalique, C.M.: Computational method based on Bernstein operational matrices for multi-order fractional differential equations. Filomat 28(3), 591-601 (2014) · Zbl 1471.65094 · doi:10.2298/FIL1403591R
[12] Mirzaee, F., Samadyar, N.: Application of orthonormal Bernstein polynomials to construct a efficient scheme for solving fractional stochastic integro-differential equation. Optik Int. J. Light Electron Opt. 132, 262-273 (2017) · doi:10.1016/j.ijleo.2016.12.029
[13] Javadi, Sh, Babolian, E., Taheri, Z.: Solving generalized pantograph equations by shifted orthonormal Bernstein polynomials. J. Appl. Comput. Math. 303, 1-14 (2016) · Zbl 1382.65189 · doi:10.1016/j.cam.2016.02.025
[14] Maleknejad, K., Hashemizadeh, E., Basirat, B.: Computational method based on Bernstein operational matrices for nonlinear Volterra-Fredholm-Hammerstein integral equations. Commun. Nonlinear Sci. Numer. Simul. 17(1), 52-61 (2012) · Zbl 1244.65243 · doi:10.1016/j.cnsns.2011.04.023
[15] Pandey, R.K., Kumar, N.: Solution of Lane-Emden type equations using Bernstein operational matrix of differentiation. New Astron. 17(3), 303-308 (2012) · doi:10.1016/j.newast.2011.09.005
[16] Yousefi, S.A., Behroozifar, M.: Operational matrices of Bernstein polynomials and their applications. Int. J. Syst. Sci. 41, 709-716 (2010) · Zbl 1195.65061 · doi:10.1080/00207720903154783
[17] Saadatmandi, A.: Bernstein operational matrix of fractional derivatives and its applications. Appl. Math. Model. 38(4), 1365-1372 (2014) · Zbl 1427.65134 · doi:10.1016/j.apm.2013.08.007
[18] Spiegel, M.R.: Theory and Problems of Complex Variables. McGraw-Hill Inc., New York (1974)
[19] Ahlfors, L.V.: Complex Analysis. McGraw-Hill Inc., Tokyo (1966) · Zbl 0154.31904
[20] Sezer, M., Akyuz Dascoglu, A.: Taylor polynomial solutions of general linear differential-difference equations with variable coefficients. Appl. Math. Comput. 174, 1526-1538 (2006) · Zbl 1090.65087
[21] Chiang, Y.M., Wang, S.: Oscillation results of certain higher-order linear differential equations with periodic coefficients in the complex plane. J. Math. Anal. Appl. 215, 560-576 (1997) · Zbl 0901.34042 · doi:10.1006/jmaa.1997.5677
[22] Gulsu, M., Sezer, M.: Approximate solution to linear complex differential equation by a new approximate approach. Appl. Math. Comput. 185, 636-645 (2007) · Zbl 1107.65328
[23] Sezer, M., Gulsu, M., Tanay, B.: A Taylor collocation method for the numerical solution of complex differential equations with mixed conditions in elliptic domains. Appl. Math. Comput. 182, 498-508 (2006) · Zbl 1106.65061
[24] Mirzaee, F., Samadyar, N.: Parameters estimation of HIV infection model of CD \[4^+\]+ T-cells by applying orthonormal Bernstein collocation method. Int. J. Biomath. 11(2), 1850020 (2018) · Zbl 1381.92094 · doi:10.1142/S1793524518500201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.