×

A new ZK-ILW equation for algebraic gravity solitary waves in finite depth stratified atmosphere and the research of squall lines formation mechanism. (English) Zbl 1416.86008

Summary: The research of algebraic gravity solitary waves is an advanced field which has important practical and theoretical value in physical, oceanography, aerology and etc. By calculation condition and theoretical method limit, previous researches mainly focused on the \((1+1)\) dimensional models, and \((2+1)\) dimensional models were few considered. In this paper, from the non-static equilibrium equation, a new ZK-ILW equation is derived by using multi-scale analysis and perturbation method in finite depth stratified atmosphere, which is the first time obtained. The model can reduce to ZK-BO model \((h\rightarrow\infty)\), and ZK model \((h\rightarrow 0)\) and is the generalization of the above two models. In order to further understand the nature of algebraic gravity solitary waves, we get the analytical solution of ZK-ILW equation by using the trial function method and discuss the conservation laws. Furthermore, the fission process of algebraic gravity solitary waves is studied, and we can judge that one of the possible formation mechanism of squall lines is the fission of algebraic gravity solitary waves.

MSC:

86A10 Meteorology and atmospheric physics
76B25 Solitary waves for incompressible inviscid fluids
35Q35 PDEs in connection with fluid mechanics
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
Full Text: DOI

References:

[1] Fritts, D. C., A review of gravity wave saturation processes, effects, and variability in the middle atmosphere, PAGEOPH, 130, 343-371 (1989)
[2] Zhang, R. G.; Yang, L. G.; Song, J.; Yang, H. L., (2+1) dimensional Rossby waves with complete Coriolis force and its solution by homotopy perturbation method, Comput. Math. Appl., 73, 1996-2003 (2017) · Zbl 1371.86021
[3] Le, K. C.; Nguyen, L. T.K., Amplitude modulation of water waves governed by Boussinesq’s equation, Nonlinear Dynam., 81, 659 (2015) · Zbl 1347.76009
[4] Yang, J. Y.; Ma, W. X.; Qin, Z. Y., Lump and lump-soliton solutions to the (2+1)-dimensional Ito equation, Anal. Math. Phys. (2017)
[5] Zhang, J. B.; Ma, W. X., Mixed lump-kink solutions to the BKP equation, Comput. Math. Appl., 74, 591-596 (2017) · Zbl 1387.35540
[6] Zhao, H. Q.; Ma, W. X., Mixed lump-kink solutions to the KP equation, Comput. Math. Appl., 74, 1399-1405 (2017) · Zbl 1394.35461
[7] Ma, W. X.; Huang, T. W.; Zhang, Y., A multiple exp-function method for nonlinear differential equations and its application, Phys. Scr., 82, 065003 (2010) · Zbl 1219.35209
[8] Ma, W. X.; Zhu, Z. N., Solving the (3+1)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm, Appl. Math. Comput., 218, 11871-11879 (2012) · Zbl 1280.35122
[9] Yang, H. W.; Xu, Z. H.; Yang, D. Z.; Feng, X. R.; Dong, H. H., ZK-Burgers equation for three-dimensional Rossby solitary waves and its solutions as well as chirp effect, Adv. Difference Equ., 2016, 167 (2016) · Zbl 1419.35180
[10] Parker, A., Periodic solution of the intermediate long-wave equation: a nonlinear superposition principle, J. Phys. A: Math. Gen., 25, 2005-2032 (1991) · Zbl 0762.76010
[11] Ma, W. X.; Yong, X. L.; Zhang, H. Q., Diversity of interaction solutions to the (2+1)-dimensional Ito equation, Comput. Math. Appl., 75, 289-295 (2018) · Zbl 1416.35232
[12] Xu, X. X., A deformed reduced semi-discrete Kaup-Newell equation, the related integrable family and Darboux transformation, Appl. Math. Comput., 251, 275-283 (2015) · Zbl 1328.37054
[13] Zhao, Q. L.; Li, X. Y.; Liu, F. S., Two integrable lattice hierarchies and their respective Darboux transformations, Appl. Math. Comput., 219, 5693-5705 (2013) · Zbl 1288.37023
[14] Guest, F. M.; Reeder, M. J., Inertia-gravity waves observed in the lower stratosphere over Macquarie island, J. Atmos. Sci., 57, 737-752 (2000)
[15] Derek, J. P., A Bayesian examination of deep convective squall-line sensitivity to change in cloud microphysical parameters, J. Atmos. Sci., 73, 637-665 (2016)
[16] Ma, W. X., A refined invariant subspace method and applications to evolution equations, Sci. China Math., 55, 1769-1778 (2012) · Zbl 1263.37071
[17] Ma, W. X.; Liu, Y. P., Invariant subspaces and exact solutions of a class of dispersive evolution equations, Commun. Nonlinear Sci. Numer. Simul., 17, 3795-3801 (2012) · Zbl 1250.35057
[18] Weiss, J.; Tabor, M.; Caracval, G., The Painlevé property for partical differential equation, J. Math. Phys., 24, 522-526 (1983) · Zbl 0514.35083
[19] Gordoa, P. R.; Pickering, A.; Zhu, Z. N., On matrix Painlevé hierarchies, J. Differential Equations, 261, 1128-1175 (2016) · Zbl 1352.34116
[20] Xu, X. X., An integrable hierarchy of the MKdV-integrable systems, its Hamiltonian structure and corresponding nonisospectral integrable hierarchy, Appl. Math. Comput., 216, 344-353 (2010) · Zbl 1188.37065
[21] Ma, W. X.; Abdejabbar, A., A Bäcklund transformation of a \((3 + 1)\)-dimensional generalized KP equation, Appl. Math. Lett., 12, 1500-1504 (2012) · Zbl 1248.37070
[22] Guo, X. R., On bilinear representations and infinite conservation laws of a nonlinear variable-coefficient equation, Appl. Math. Comput., 248, 531-535 (2014) · Zbl 1338.37085
[23] Khalique, C. M.; Magalakwe, G., Combined sinh-cosh-Gordon equation: Symmetry reductions, exact solutions and conservation laws, Quaest. Math., 37, 199 (2014) · Zbl 1397.35152
[24] Dong, H. H.; Zhao, K.; Yang, H. W.; Li, Y. Q., Generalised \((2 + 1)\) dimensional super MKdV hierarchy for integrable systems in soliton theory, East Asian J. Appl. Math., 5, 256-272 (2015) · Zbl 1457.35054
[25] Ma, W. X.; Lee, J. H., A transformed rational function method and exact solutions to the (3+1) dimensional Jimbo-Miwa equation, Chaos Solitons Fractals, 42, 1356-1363 (2009) · Zbl 1198.35231
[26] Yang, H. W.; Yang, D. Z.; Shi, Y. L.; Jin, S. S., Interaction of algebraic Rossby solitary waves with topography and atmospheric blocking, Dyn. Atmos. Oceans, 71, 21-34 (2015)
[27] Ono, H., The evaluation of different trial shape functions applied in spectral element method in analysis of multigroup Pn transport equation, Ann. Nucl. Energy, 103, 147-156 (2017)
[28] Zhao, Q. L.; Wang, X. Z., The integrable coupling system of a \(3 \times 3\) discrete matrix spectral, Appl. Math. Comput., 216, 730-743 (2010) · Zbl 1190.37063
[29] Zhang, Y.; Dong, H. H.; Zhang, X. E.; Yang, H. W., Rational solutions and lump solutions to the generalized(3+1)-dimensional Shallow Water-like equation, Comput. Math. Appl., 73, 246-252 (2017) · Zbl 1368.35240
[30] Wang, X. Z.; Dong, H. H.; Li, Y. X., Some reductions from a Lax integrable system and theri Hamiltonian structures, Appl. Math. Comput., 218, 10032-10039 (2012) · Zbl 1254.37047
[31] Li, X. Y.; Zhao, Q. L.; Li, Y. X.; Dong, H. H., Binary bargmann symmetry constraint associated with \(3 \times 3\) discrete matrix spectral problem, J. Nonlinear Sci. Appl., 8, 496-506 (2015) · Zbl 1327.35335
[32] Ma, W. X., Conservation laws of discrete evolution equation bysymmetries and adjoint symmetries, Symmetry, 7, 714-725 (2015) · Zbl 1381.37080
[33] Li, X. Y.; Li, Y. X.; Yang, H. X., Two families of Liouville intergrable lattice equation, Appl. Math. Comput., 217, 8671-8682 (2011) · Zbl 1222.37079
[34] Tang, L. Y.; Fan, J. C., A family of liouville integrable lattice equations and its conservation laws, Appl. Math. Comput., 217, 1907-1912 (2010) · Zbl 1202.39005
[35] Kodama, Y.; Ablowitz, M. J.; Satsuma, J., Direct and inverse scattering problems of the nonlinear intermediate long wave equation, J. Math. Phys., 23, 564-576 (1982) · Zbl 0489.35004
[36] Miloh, T., On periodic and solitary wavelike solutions of the intermediate long-wave equation, J. Fluid Mech., 211, 617-627 (1990) · Zbl 0686.76013
[37] Osborne, A. R.; Burch, T. L., Internal solitons in the Andaman Sea, Science, 208, 451 (1980)
[38] Liu, A. K.; Holbrook, J. R.; Apel, J. R., Nonlinear internal wave evolution in the Sulu Sea, J. Phys. Oceanogr., 15, 1613 (1985)
[39] Christie, D. R.; Muirhead, K.; Hales, A., On solitary waves in deep water, J. Fluid Mech., 35, 805 (1978)
[40] Ono, H., Algebraic solitary waves in stratified fluids, J. Oceanogr. Soc. Jpn., 39, 1082-1091 (1975) · Zbl 1334.76027
[41] Abdelouhab, L.; Bona, J. L.; Felland, M.; Saut, J. C., Nonlocal models for nonlinear dispersive waves, Physica D, 40, 360-392 (1989) · Zbl 0699.35227
[42] Kubota, T.; Ko, D. R.S.; Dobbs, L. D., Weakly-nonlinear, long internal gravity waves in stratified fluids of finite depth, J. Hydrol., 12, 157-165 (1978)
[43] Satsuma, J.; Ablowitz, M. J.; Kodama, Y., On a internal wave equation describing a stratified fluid with finite depth, Phys. Lett., 73A, 283-286 (1979)
[44] Kalisch, H., Derivation and comparison of model equation for interfacial capillary-gravity waves in deep water, Math. Comput. Simulation, 74, 168-178 (2007) · Zbl 1108.76018
[45] Yang, H. W.; Yin, B. S.; Shi, Y. L.; Wang, Q. B., Forced ILW-Burgers equation as a model for Rossby solitary waves generated by topography in finite depth fluids, J. Appl. Math., 2012, 491343 (2012) · Zbl 1267.35080
[46] Antuono, M.; Colagrossi, A., The damping of viscous gravity waves, Wave Motion, 50, 197-209 (2013) · Zbl 1360.76078
[47] Tepper, M., On the generation of pressure jump lines by the impulsive addition of momentum to simple current systems, J. Meteorol., 13, 287-297 (1955)
[48] Li, M. C., Non-linear evolution process of squall lines in baroclinic atmosphere and K-dV equation, J. Meteorol., 8, 143-152 (1984)
[49] Xu, Q., The inertia solitary waves in stratification atmosphere and the form of nonlinear process about squall lines, Sci. Sin. B, 1, 87-97 (1983)
[50] Yang, H. W.; Zhao, Q. F.; Yin, B. S.; Dong, H. H., A new integro-differential equation for Rossby solitary waves with topography effect in deep rotational fluids, Abstr. Appl. Anal., 597807, 1 (2013) · Zbl 1432.76067
[51] Machado, J. A.T.; Lopes, A. M., Multidimensinal scaling analysis of soccer dynamics, Appl. Math. Model., 45, 642-652 (2017) · Zbl 1446.62338
[52] Ji, Q. X.; Wand, C. G.; Tao, H. F., Multi-scale wrinkling analysis of the inflated beam under bending, Int. J. Mech. Sci., 126, 1-11 (2017)
[53] Ayati, Z.; Biazar, J., On the convergence of Homotopy perturbation method, J. Egypt. Math. Soc., 23, 424-428 (2015) · Zbl 1328.65112
[54] Mirzazadeh, M.; Ayati, Z., Now homotopy perturbation method for system of Burgers equations, Alexandria Eng. J., 55, 1619-1624 (2016)
[55] Ma, W. X., A bi-Hamiltonian formulation for triangular systems by perturbations, J. Math. Phys., 43, 1408-1421 (2002) · Zbl 1059.37052
[56] Anjan, B., Topological and non-topologicalsolitons for the generalized Zakharov-Kuznetsov modified equal width equation, Internat. J. Theoret. Phys., 48, 2698-2703 (2009) · Zbl 1187.81098
[57] Tao, S. Y., China’s Heavy Rain (1980), Science Press
[58] Zabusky, N. J.; Kruskal, M. D., Interaction of soliton in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett., 15, 240-243 (1963) · Zbl 1201.35174
[59] Lax, P. D., Differential equations, difference equations and matrix theory, Comm. Pure Appl. Math., 21, 467-490 (1968) · Zbl 0162.41103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.