×

Time second-order finite difference/finite element algorithm for nonlinear time-fractional diffusion problem with fourth-order derivative term. (English) Zbl 1419.65068

Summary: In this article, we study and analyze a Galerkin mixed finite element (MFE) method combined with time second-order discrete scheme for solving nonlinear time fractional diffusion equation with fourth-order derivative term. We firstly introduce an auxiliary variable \(\sigma=\Delta u\), reduce the fourth-order problem into a coupled system with two equations, discretize the obtained coupled system at time \(t_{k-\frac{\alpha}{2}}\) by a second-order difference scheme with second-order approximation for fractional derivative, then formulate mixed weak formulation and fully discrete MFE scheme. Further, we give the detailed proof for stability of scheme, the existence and uniqueness of MFE solution, and a priori error estimates. Finally, by some numerical computations, we test the theoretical results, which illustrate that we can obtain the numerical results for two variables, moreover, we arrive at second-order time convergence orders, which are higher than the ones yielded by the \(L1\)-approximation.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
35R11 Fractional partial differential equations
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Li, C. P.; Zhao, Z. G.; Chen, Y. Q., Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion, Comput. Math. Appl., 62, 855-875 (2011) · Zbl 1228.65190
[2] Quintana-Murillo, J.; Yuste, S. B., A finite difference method with non-uniform timesteps for fractional diffusion and diffusion-wave equations, Eur. Phys. J. Spec. Top., 222, 8, 1987-1998 (2013)
[3] Shivanian, E., Local radial basis function interpolation method to simulate 2D fractional-time convection-diffusion-reaction equations with error analysis, Numer. Methods Partial Differential Equations, 33, 3, 974-994 (2017) · Zbl 1370.65041
[4] Aslefallah, M.; Shivanian, E., Nonlinear fractional integro-differential reaction-diffusion equation via radial basis functions, Eur. Phys. J. Plus, 130, 47, 1-9 (2015)
[5] Shen, S.; Liu, F.; Anh, V.; Turner, I.; Chen, J., A characteristic difference method for the variable-order fractional advection-diffusion equation, J. Appl. Math. Comput., 42, 371-386 (2013) · Zbl 1296.65114
[6] Sun, H. G.; Chen, W.; Li, C. P.; Chen, Y. Q., Finite difference schemes for variable-order time fractional diffusion equation, Int. J. Bifurcation Chaos, 22, 4, 1250085 (2012) · Zbl 1258.65079
[7] Liu, Z. G.; Cheng, A. J.; Li, X. L.; Wang, H., A fast solution technique for finite element discretization of the space-time fractional diffusion equation, Appl. Numer. Math., 119, 146-163 (2017) · Zbl 1368.65194
[8] Wang, H.; Du, N., Fast solution methods for space-fractional diffusion equations, J. Comput. Appl. Math., 255, 376-383 (2014) · Zbl 1291.65324
[9] Zhuang, P.; Liu, F.; Anh, V.; Turner, I., Numerical methods for the variable-order fractional advection diffusion equation with a nonlinear source term, SIAM J. Numer. Anal., 47, 1760-1781 (2009) · Zbl 1204.26013
[10] Zhao, Y.; Zhang, Y.; Shi, D.; Liu, F.; Turner, I., Superconvergence analysis of nonconforming finite element method for two-dimensional time fractional diffusion equations, Appl. Math. Lett., 59, 38-47 (2016) · Zbl 1382.65334
[11] Meerschaert, M. M.; Tadjeran, C., Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math., 172, 1, 65-77 (2004) · Zbl 1126.76346
[12] Yang, Q.; Turner, I.; Moroney, T.; Liu, F., A finite volume scheme with preconditioned Lanczos method for two-dimensional space-fractional reaction-diffusion equations, Appl. Math. Model., 38, 15, 3755-3762 (2014) · Zbl 1429.65215
[13] Feng, L. B.; Zhuang, P.; Liu, F.; Turner, I., Stability and convergence of a new finite volume method for a two-sided space-fractional diffusion equation, Appl. Math. Comput., 257, 52-65 (2015) · Zbl 1339.65144
[14] Li, M.; Huang, C. M., ADI Galerkin FEMs for the 2D nonlinear time-space fractional diffusion-wave equation, Int. J. Model. Simulat. Sci. Comput., 8, 4, 1750025 (2017)
[15] Jiang, Y. J.; Ma, J. T., High-order finite element methods for time-fractional partial differential equations, J. Comput. Appl. Math., 235, 3285-3290 (2011) · Zbl 1216.65130
[16] Ford, N. J.; Xiao, J. Y.; Yan, Y. B., A finite element method for time fractional partial differential equations, Fract. Calc. Appl. Anal., 14, 3, 454-474 (2011) · Zbl 1273.65142
[17] Zhao, Z. G.; Zheng, Y. Y.; Guo, P., A Galerkin finite element scheme for time-space fractional diffusion equation, Int. J. Comput. Math., 93, 7, 1212-1225 (2016) · Zbl 1390.65122
[18] Jin, B.; Lazarov, R.; Liu, Y. K.; Zhou, Z., The Galerkin finite element method for a multi-term time-fractional diffusion equation, J. Comput. Phys., 281, 825-843 (2015) · Zbl 1352.65350
[19] Zhang, N.; Deng, W.; Wu, Y., Finite difference/element method for a two-dimensional modified fractional diffusion equation, Adv. Appl. Math. Mech., 4, 496-518 (2012) · Zbl 1262.65108
[20] Wang, Z. B.; Vong, S. W., Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation, J. Comput. Phys., 277, 1-15 (2014) · Zbl 1349.65348
[21] Bu, W. P.; Tang, Y. F.; Yang, J. Y., Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations, J. Comput. Phys., 276, 26-38 (2014) · Zbl 1349.65441
[22] Zeng, F.; Li, C.; Liu, F.; Turner, I., The use of finite difference/element approaches for solving the time-fractional subdiffusion equation, SIAM J. Sci. Comput., 35, 6, A2976-A3000 (2013) · Zbl 1292.65096
[23] Lin, Y. M.; Xu, C. J., Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225, 1533-1552 (2007) · Zbl 1126.65121
[24] Heydari, M. H.; Hooshmandasl, M. R.; Ghaini, F. M.; Cattani, C., Wavelets method for the time fractional diffusion-wave equation, Phys. Lett. A, 379, 3, 71-76 (2015) · Zbl 1304.35748
[25] Semary, M. S.; Hassan, H. N.; Radwan, A. G., Controlled picard method for solving nonlinear fractional reaction-diffusion models in porous catalysts, Chem. Eng. Commun., 204, 6, 635-647 (2017)
[26] Guo, L.; Wang, Z.; Vong, S., Fully discrete local discontinuous Galerkin methods for some time-fractional fourth-order problems, Int. J. Comput. Math., 93, 10, 1665-1682 (2016) · Zbl 1367.65143
[27] Wei, L. L.; He, Y. N., Analysis of a fully discrete local discontinuous Galerkin method for time-fractional fourth-order problems, Appl. Math. Model., 38, 4, 1511-1522 (2014) · Zbl 1427.65267
[28] Liu, Y.; Fang, Z. C.; Li, H.; He, S., A mixed finite element method for a time-fractional fourth-order partial differential equation, Appl. Math. Comput., 243, 703-717 (2014) · Zbl 1336.65166
[29] Liu, Y.; Du, Y. W.; Li, H.; He, S.; Gao, W., Finite difference/finite element method for a nonlinear time-fractional fourth-order reaction-diffusion problem, Comput. Math. Appl., 70, 4, 573-591 (2015) · Zbl 1443.65209
[30] Liu, Y.; Du, Y. W.; Li, H.; Li, J. C.; He, S., A two-grid mixed finite element method for a nonlinear fourth-order reaction-diffusion problem with time-fractional derivative, Comput. Math. Appl., 70, 10, 2474-2492 (2015) · Zbl 1443.65210
[31] Tariq, H.; Akram, G., Quintic spline technique for time fractional fourth-order partial differential equation, Numer. Methods Partial Differential Equations, 33, 2, 445-466 (2017) · Zbl 1361.65071
[32] Zhang, P.; Pu, H., A second-order compact difference scheme for the fourth-order fractional sub-diffusion equation, Numer. Algorithms, 76, 2, 573-598 (2017) · Zbl 1378.65161
[33] Ji, C. C.; Sun, Z. Z.; Hao, Z. P., Numerical algorithms with high spatial accuracy for the fourth-order fractional sub-diffusion equations with the first Dirichlet boundary conditions, J. Sci. Comput., 66, 3, 1148-1174 (2016) · Zbl 1373.65057
[34] Hu, X. L.; Zhang, L. M., On finite difference methods for fourth-order fractional diffusion-wave and subdiffusion systems, Appl. Math. Comput., 218, 9, 5019-5034 (2012) · Zbl 1262.65101
[35] Gao, G. H.; Sun, H. W.; Sun, Z. Z., Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equations based on certain superconvergence, J. Comput. Phys., 280, 510-528 (2015) · Zbl 1349.65295
[36] Sun, H.; Sun, Z. Z.; Gao, G. H., Some temporal second order difference schemes for fractional wave equations, Numer. Methods Partial Differential Equations, 32, 3, 970-1001 (2016) · Zbl 1352.65269
[37] Wang, Y. J.; Liu, Y.; Li, H.; Wang, J. F., Finite element method combined with second-order time discrete scheme for nonlinear fractional Cable equation, Eur. Phys. J. Plus, 131, 61 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.