×

Pinned, locked, pushed, and pulled traveling waves in structured environments. (English) Zbl 1415.92214

Summary: Traveling fronts describe the transition between two alternative states in a great number of physical and biological systems. Examples include the spread of beneficial mutations, chemical reactions, and the invasions by foreign species. In homogeneous environments, the alternative states are separated by a smooth front moving at a constant velocity. This simple picture can break down in structured environments such as tissues, patchy landscapes, and microfluidic devices. Habitat fragmentation can pin the front at a particular location or lock invasion velocities into specific values. Locked velocities are not sensitive to moderate changes in dispersal or growth and are determined by the spatial and temporal periodicity of the environment. The synchronization with the environment results in discontinuous fronts that propagate as periodic pulses. We characterize the transition from continuous to locked invasions and show that it is controlled by positive density-dependence in dispersal or growth. We also demonstrate that velocity locking is robust to demographic and environmental fluctuations and examine stochastic dynamics and evolution in locked invasions.

MSC:

92D40 Ecology
35Q92 PDEs in connection with biology, chemistry and other natural sciences

References:

[1] Abraham, E. R., The generation of plankton patchiness by turbulent stirring, Nature, 391, 6667, 577 (1998)
[2] Allee, W.; Bowen, E., Studies in animal aggregations: mass protection against colloidal silver among goldfishes, J. Exp. Zool., 61, 185-207 (1932)
[3] Arnol’d, V. I., Remarks on the perturbation theory for problems of mathieu type, Russian Math. Surveys, 38, 4, 215 (1983), URL http://stacks.iop.org/0036-0279/38/i=4/a=R11 · Zbl 0541.34035
[4] Aronson, D. G.; Weinberger, H. G., (Nonlinear Diffusion in Population Genetics, Combustion and Nerve Propagation. Nonlinear Diffusion in Population Genetics, Combustion and Nerve Propagation, Lectures Notes Math, vol. 446 (1975), Springer: Springer New York), 549 · Zbl 0325.35050
[5] Bak, P., The devil’s staircase, Phys. Today, 39, 12, 38-45 (1986)
[6] Bär, M.; Falcke, M.; Levine, H.; Tsimring, L. S., Discrete stochastic modeling of calcium channel dynamics, Phys. Rev. Lett., 84, 24, 5664 (2000)
[7] Basler, M.; Krech, W.; Platov, K. Y., Theory of phase locking in small josephson-junction cells, Phys. Rev. B, 52, 10, 7504 (1995)
[8] Bechinger, C.; Di Leonardo, R.; Löwen, H.; Reichhardt, C.; Volpe, G.; Volpe, G., Active particles in complex and crowded environments, Rev. Modern Phys., 88, 4, 045006 (2016)
[10] Bender, C. M.; Orszag, S. A., Advanced Mathematical Methods for Scientists and Engineers I (1999), Springer Science & Business Media · Zbl 0938.34001
[11] Beverton, R. J.; Holt, S. J., On the Dynamics of Exploited Fish Populations, Vol. 11 (2012), Springer Science & Business Media
[12] Birzu, G.; Hallatschek, O.; Korolev, K. S., Fluctuations uncover a distinct class of traveling waves, Proc. Natl. Acad. Sci., 201715737 (2018) · Zbl 1416.35140
[13] Brockmann, D.; Helbing, D., The hidden geometry of complex, network-driven contagion phenomena, Science, 342, 6164, 1337-1342 (2013)
[14] de Camino-Beck, T.; Lewis, M., Invasion with stage-structured coupled map lattices: Application to the spread of scentless chamomile, Ecol. Model., 220, 23, 3394-3403 (2009)
[15] Carretero-González, R.; Arrowsmith, D.; Vivaldi, F., Mode-locking in coupled map lattices, Physica D, 103, 1, 381-403 (1997) · Zbl 1194.37048
[16] Carretero-Gonzalez, R.; Arrowsmith, D.; Vivaldi, F., One-dimensional dynamics for traveling fronts in coupled map lattices, Phys. Rev. E, 61, 2, 1329 (2000)
[17] Chen, D.; Irvine, J.; Cass, A., Incorporating allee effects in fish stock recruitment models and applications for determining reference points, Can. J. Fish. Aquat. Sci., 59, 2, 242-249 (2002)
[18] Courchamp, F.; Clutton-Brock, T.; Grenfell, B., Inverse density dependence and the allee effect, Trends Ecol. Evol., 14, 405-410 (1999)
[19] Coutinho, R.; Fernandez, B., Fronts and interfaces in bistable extended mappings, Nonlinearity, 11, 5, 1407 (1998) · Zbl 0919.58022
[20] Coutinho, R.; Fernandez, B., Fronts in extended systems of bistable maps coupled via convolutions, Nonlinearity, 17, 1, 23 (2003) · Zbl 1083.37059
[21] Coutinho, R.; Fernandez, B., Spatially extended monotone mappings, (Dynamics of Coupled Map Lattices and of Related Spatially Extended Systems (2005), Springer), 265-284 · Zbl 1099.37062
[22] Dai, L.; Korolev, K. S.; Gore, J., Slower recovery in space before collapse of connected populations, Nature, 496, 7445, 355-358 (2013)
[23] Datta, M. S.; Korolev, K. S.; Cvijovic, I.; Dudley, C.; Gore, J., Range expansion promotes cooperation in an experimental microbial metapopulation, Proc. Natl. Acad. Sci., 110, 18, 7354-7359 (2013)
[24] Deforet, M., Carmona-Fontaine, C., Korolev, K.S., Xavier, J.B., 2017. A simple rule for the evolution of fast dispersal at the edge of expanding populations. arXiv preprint arXiv:1711.07955; Deforet, M., Carmona-Fontaine, C., Korolev, K.S., Xavier, J.B., 2017. A simple rule for the evolution of fast dispersal at the edge of expanding populations. arXiv preprint arXiv:1711.07955
[25] van Ditmarsch, D.; Boyle, K. E.; Sakhtah, H.; Oyler, J. E.; Nadell, C. D.; Déziel, É.; Dietrich, L. E.; Xavier, J. B., Convergent evolution of hyperswarming leads to impaired biofilm formation in pathogenic bacteria, Cell Rep., 4, 4, 697-708 (2013)
[26] Douglas, J. F.; Efimenko, K.; Fischer, D. A.; Phelan, F. R.; Genzer, J., Propagating waves of self-assembly in organosilane monolayers, Proc. Natl. Acad. Sci. USA, 104, 10324-10329 (2007)
[27] Ecke, R. E.; Farmer, J. D.; Umberger, D. K., Scaling of the arnold tongues, Nonlinearity, 2, 2, 175 (1989), URL http://stacks.iop.org/0951-7715/2/i=2/a=001 · Zbl 0689.58017
[28] Eykholt, R.; Umberger, D., Relating the various scaling exponents used to characterize fat fractals in nonlinear dynamical systems, Physica D, 30, 1-2, 43-60 (1988) · Zbl 0656.58018
[29] Fahrig, L., Effects of habitat fragmentation on biodiversity, Annu. Rev. Ecol. Evol. Syst., 487-515 (2003)
[30] Fáth, G., Propagation failure of traveling waves in a discrete bistable medium, Physica D, 116, 1, 176-190 (1998) · Zbl 0935.35070
[31] Fernandez, B.; Raymond, L., Propagating fronts in a bistable coupled map lattice, J. Statist. Phys., 86, 1-2, 337-350 (1997) · Zbl 0937.82030
[32] Fife, P. C.; McLeod, J. B., The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Ration. Mech. Anal., 65, 335-361 (1977) · Zbl 0361.35035
[33] Fisher, R. A., The wave of advance of advantageous genes, Ann. Eugenics, 7, 355-369 (1937) · JFM 63.1111.04
[34] Fisman, D. N., Seasonality of infectious diseases, Annu. Rev. Public Health, 28, 127-143 (2007)
[35] Gandhi, S. R.; Yurtsev, E. A.; Korolev, K. S.; Gore, J., Range expansions transition from pulled to pushed waves as growth becomes more cooperative in an experimental microbial population, Proc. Natl. Acad. Sci., 113, 25, 69226927 (2016)
[37] Hadeler, K., Free boundary problems in biological models, Free Bound. Probl. Theory Appl., 2, 664-671 (1983) · Zbl 0525.92023
[38] Hadeler, K.; Rothe, F., Travelling fronts in nonlinear diffusion equations, J. Math. Biol., 2, 3, 251-263 (1975) · Zbl 0343.92009
[39] Hallatschek, O.; Fisher, D. S., Acceleration of evolutionary spread by long-range dispersal, Proc. Natl. Acad. Sci., 111, 46, E4911-E4919 (2014)
[40] Hastings, A.; Cuddington, K.; Davies, K. F.; Dugaw, C. J.; Elmendorf, S.; Freestone, A.; Harrison, S.; Holland, M.; Lambrinos, J.; Malvadkar, U., The spatial spread of invasions: new developments in theory and evidence, Ecol. Lett., 8, 1, 91-101 (2005)
[41] Hill, A. V., The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves, J. Physiol. (Lond), 40, 4-7 (1910)
[42] Ishihara, K.; Korolev, K. S.; Mitchison, T. J., Physical basis of large microtubule aster growth, Elife, 5 (2016)
[43] Johnson, D. M.; Liebhold, A. M.; Tobin, P. C.; Bjornstad, O. N., Allee effects and pulsed invasion by the gypsy moth, Nature, 444, 7117, 361-363 (2006)
[44] Jurcevic, P.; Lanyon, B. P.; Hauke, P.; Hempel, C.; Zoller, P.; Blatt, R.; Roos, C. F., Quasiparticle engineering and entanglement propagation in a quantum many-body system, Nature, 511, 7508, 202 (2014)
[46] Kéfi, S.; Rietkerk, M.; Alados, C. L.; Pueyo, Y.; Papanastasis, V. P.; ElAich, A.; De Ruiter, P. C., Spatial vegetation patterns and imminent desertification in mediterranean arid ecosystems, Nature, 449, 7159, 213-217 (2007)
[47] Keitt, T. H.; Lewis, M. A.; Holt, R. D., Allee effects, invasion pinning, and species borders, Amer. Natur., 157, 2, 203-216 (2001)
[48] Kessler, D. A.; Ner, Z.; Sander, L. M., Front propagation: precursors, cutoffs, and structural stability, Phys. Rev. E, 58, 1, 107 (1998)
[49] Kimura, M.; Weiss, G. H., The stepping stone model of population structure and the decrease of genetic correlation with distance, Genetics, 49, 561-576 (1964)
[50] Kolmogorov, A. N.; Petrovsky, N.; Piscounov, N. S., A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem, Mosc. Univ. Bull. Math., 1, 1 (1937)
[52] Korolev, K. S., The fate of cooperation during range expansions, PLoS Comput. Biol., 9, 3, Article e1002994 pp. (2013)
[53] Korolev, K. S., Evolution arrests invasions of cooperative populations, Phys. Rev. Lett., 115, 20, 208104 (2015)
[54] Korolev, K. S.; Avlund, M.; Hallatschek, O.; Nelson, D. R., Genetic demixing and evolution in linear stepping stone models, Rev. Modern Phys., 82, 1691-1718 (2010)
[55] Korolev, K. S.; Nelson, D., Competition and cooperation in one-dimensional stepping-stone models, Phys. Rev. Lett., 107, 088103 (2011)
[56] Korolev, K., Selective sweeps in growing microbial colonies, Phys. Biol., 9, 2, 026008 (2012)
[57] Kot, M.; Lewis, M. A.; van den Driessche, P., Dispersal data and the spread of invading organisms, Ecology, 77, 7, 2027-2042 (1996)
[58] Lan, Z.; Minář, J.; Levi, E.; Li, W.; Lesanovsky, I., Emergent devils staircase without particle-hole symmetry in rydberg quantum gases with competing attractive and repulsive interactions, Phys. Rev. Lett., 115, 20, 203001 (2015)
[59] Lavrentovich, M. O.; Korolev, K. S.; Nelson, D. R., Radial domany-kinzel models with mutation and selection, Phys. Rev. E, 87, 012103 (2013)
[60] L’Heureux, N.; Lucherini, M.; Festa-Bianchet, M.; Jorgenson, J. T., Density-dependent mother-yearling association in bighorn sheep, Anim. Behav., 49, 4, 901-910 (1995)
[61] Liu, C.; Fu, X.; Liu, L.; Ren, X.; Chau, C. K.; Li, S.; Xiang, L.; Zeng, H.; Chen, G.; Tang, L.-H., Sequential establishment of stripe patterns in an expanding cell population, Science, 334, 6053, 238-241 (2011)
[62] Lui, R., Biological growth and spread modeled by systems of recursions. i. mathematical theory, Math. Biosci., 93, 2, 269-295 (1989) · Zbl 0706.92014
[63] Marquet, C.; Peschanski, R.; Soyez, G., Consequences of strong fluctuations on high-energy QCD evolution, Phys. Rev. D, 73, 11, 114005 (2006)
[64] Maselko, J.; Swinney, H. L., A complex transition sequence in the belousov-zhabotinskii reaction, Phys. Scr., 1985, T9, 35 (1985)
[66] Meerson, B.; Sasorov, P. V.; Kaplan, Y., Velocity fluctuations of population fronts propagating into metastable states, Phys. Rev. E, 84, 1, 011147 (2011)
[67] Menon, R.; Korolev, K. S., Public good diffusion limits microbial mutualism, Phys. Rev. Lett., 114, 16, 168102 (2015)
[68] Mikhailov, A. S.; Schimansky-Geier, L.; Ebeling, W., Stochastic motion of the propagating front in bistable media, Phys. Lett. A, 96, 9, 453-456 (1983)
[69] Mistro, D. C.; Rodrigues, L. A.D.; Petrovskii, S., Spatiotemporal complexity of biological invasion in a space-and time-discrete predator – prey system with the strong allee effect, Ecol. Complex., 9, 16-32 (2012)
[70] Morisita, M., Habitat preference and evaluation of environment of an animal. experimental studies on the population density of an antlion, glenuroides japonicus m’l. [= correctly hagenomyia micans]. i., Physiol. Ecol., 5, 1, 1-16 (1952)
[71] Murray, J. D., Mathematical Biology (2003), Springer · Zbl 1006.92002
[72] Nelson, P., Biological Physics (2004), WH Freeman New York
[73] Panja, D., Effects of fluctuations on propagating fronts, Phys. Rep., 393, 2, 87-174 (2004)
[74] Paoletti, M.; Solomon, T., Experimental studies of front propagation and mode-locking in an advection-reaction-diffusion system, Europhys. Lett., 69, 5, 819 (2005)
[75] Pateman, R. M.; Hill, J. K.; Roy, D. B.; Fox, R.; Thomas, C. D., Temperature-dependent alterations in host use drive rapid range expansion in a butterfly, Science, 336, 6084, 1028-1030 (2012)
[76] Pelcé, P.; Libchaber, A., Dynamics of Curved Fronts (2012), Elsevier
[77] Petrovskii, S. V.; Li, B.-L., Exactly Solvable Models of Biological Invasion (2005), CRC Press
[78] Phillips, B. L., The evolution of growth rates on an expanding range edge, Biol. Lett., 5, 6, 802-804 (2009), URL http://rsbl.royalsocietypublishing.org/content/5/6/802
[79] Phillips, B. L.; Brown, G. P.; Greenlees, M.; Webb, J. K.; Shine, R., Rapid expansion of the cane toad (bufo marinus) invasion front in tropical australia, Austral Ecol., 32, 2, 169-176 (2007)
[80] Phillips, B. L.; Brown, G. P.; Webb, J. K.; Shine, R., Invasion and the evolution of speed in toads, Nature, 439 (2006), 803-803
[81] Pigolotti, S.; Benzi, R.; Jensen, M. H.; Nelson, D. R., Population genetics in compressible flows, Phys. Rev. Lett., 108, 12, 128102 (2012)
[82] Ramaswamy, S.; Toner, J.; Prost, J., Nonequilibrium fluctuations, traveling waves, and instabilities in active membranes, Phys. Rev. Lett., 84, 15, 3494 (2000)
[83] Reguera, D.; Reimann, P.; Hänggi, P.; Rubi, J., Interplay of frequency-synchronization with noise: current resonances, giant diffusion and diffusion-crests, Europhys. Lett., 57, 5, 644 (2002)
[84] Rocco, A.; Casademunt, J.; Ebert, U.; van Saarloos, W., Diffusion coefficient of propagating fronts with multiplicative noise, Phys. Rev. E, 65, 1, 012102 (2001)
[85] Roques, L.; Garnier, J.; Hamel, F.; Klein, E. K., Allee effect promotes diversity in traveling waves of colonization, Proc. Natl. Acad. Sci., 109, 8828-8833 (2012)
[86] Rouzine, I. M.; Wakeley, J.; Coffin, J. M., The solitary wave of asexual evolution, Proc. Natl. Acad. Sci., 100, 2, 587-592 (2003)
[87] Schachenmayer, J.; Lanyon, B.; Roos, C.; Daley, A., Entanglement growth in quench dynamics with variable range interactions, Phys. Rev. X, 3, 3, 031015 (2013)
[90] Tsimring, L. S.; Levine, H.; Kessler, D. A., Rna virus evolution via a fitness-space model, Phys. Rev. Lett., 76, 23, 4440 (1996)
[91] TurzIK, D.; Dubcová, M., Stability of steady state and traveling waves solutions in coupled map lattices, Int. J. Bifurcation Chaos, 18, 01, 219-225 (2008) · Zbl 1143.37331
[92] Umberger, D. K.; Farmer, J. D., Fat fractals on the energy surface, Phys. Rev. Lett., 55, 661-664 (1985), URL https://link.aps.org/doi/10.1103/PhysRevLett.55.661
[93] Van Saarloos, W., Front propagation into unstable states, Phys. Rep., 386, 29-222 (2003) · Zbl 1042.74029
[94] Wang, M.-H.; Kot, M.; Neubert, M. G., Integrodifference equations, allee effects, and invasions, J. Math. Biol., 44, 2, 150-168 (2002) · Zbl 0991.92032
[95] Weiner, O. D.; Marganski, W. A.; Wu, L. F.; Altschuler, S. J.; Kirschner, M. W., An actin-based wave generator organizes cell motility, PLoS Biol., 5, 9, Article e221 pp. (2007)
[96] Wilson, W.; Morris, W.; Bronstein, J., Coexistence of mutualists and exploiters on spatial landscapes, Ecol. Monogr., 73, 3, 397-413 (2003)
[97] Wioland, H.; Woodhouse, F. G.; Dunkel, J.; Goldstein, R. E., Ferromagnetic and antiferromagnetic order in bacterial vortex lattices, Nat. Phys., 12, 4, 341 (2016)
[98] Yakubu, A.-A., Allee effects in a discrete-time sis epidemic model with infected newborns, J. Difference Equ. Appl., 13, 4, 341-356 (2007) · Zbl 1118.92056
[99] Zhang, Q.; Lambert, G.; Liao, D.; Kim, H.; Robin, K.; Tung, C.-k.; Pourmand, N.; Austin, R. H., Acceleration of emergence of bacterial antibiotic resistance in connected microenvironments, Science, 333, 6050, 1764-1767 (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.