×

\(L_{\infty}\) algebras for extended geometry from Borcherds superalgebras. (English) Zbl 1478.17030

In this paper, some relevant aspects of the exceptional Lie algebras in connection with gauge field theory are explored. The approach is based on a variation to the ghost of the Batalin-Vilkovisky formalism, As the Borcherds superalgebra \(\mathcal{B}(\mathfrak{g}_{l+1})\) can be seen as a double extension of \(\mathfrak{g}_r\) and the \(L_\infty\)-brackets are described in terms of the underlying Borcherds algebra, the authors show that all even brackets above 2-brackets vanish, and that the coefficients appearing in the brackets are given by Bernoulli numbers. It is shown that the conclusion is valid in the absence of ancillary transformations at ghost number 1. Possible extensions of the construction to the case with ancillary transformations are discussed, and strong evidence that such a generalization should be based on the tensor hierarchy algebra as the suitable underlying algebra is presented.

MSC:

17B81 Applications of Lie (super)algebras to physics, etc.
81T99 Quantum field theory; related classical field theories

References:

[1] Berman, D.S., Cederwall, M., Kleinschmidt, A., Thompson, D.C.: The gauge structure of generalised diffeomorphisms. JHEP 01, 064 (2013). arXiv:1208.5884 · doi:10.1007/JHEP01(2013)064
[2] Cederwall, M., Palmkvist, J.: Extended geometries. JHEP 02, 071 (2018). arXiv:1711.07694 · Zbl 1387.81257 · doi:10.1007/JHEP02(2018)071
[3] Palmkvist, J.: Exceptional geometry and Borcherds superalgebras. JHEP 11, 032 (2015). arXiv:1507.08828 · Zbl 1387.83116 · doi:10.1007/JHEP11(2015)032
[4] Cederwall, M., Palmkvist, J.: Superalgebras, constraints and partition functions. JHEP 08, 036 (2015). arXiv:1503.06215 · Zbl 1388.81178 · doi:10.1007/JHEP08(2015)036
[5] Tseytlin, A.A.: Duality symmetric closed string theory and interacting chiral scalars. Nucl. Phys. B 350, 395-440 (1991) · doi:10.1016/0550-3213(91)90266-Z
[6] Siegel, W.: Two vierbein formalism for string inspired axionic gravity. Phys. Rev. D 47, 5453-5459 (1993). arXiv:hep-th/9302036 · doi:10.1103/PhysRevD.47.5453
[7] Siegel, W.: Manifest duality in low-energy superstrings. In International Conference on Strings 93 Berkeley, California, May 24-29, 1993, pp. 353-363 (1993). arXiv:hep-th/9308133 · Zbl 0844.58101
[8] Hitchin, N.: Lectures on generalized geometry. arXiv:1008.0973 · Zbl 1252.53096
[9] Hull, C.M.: A geometry for non-geometric string backgrounds. JHEP 10, 065 (2005). arXiv:hep-th/0406102 · doi:10.1088/1126-6708/2005/10/065
[10] Hull, C.M.: Doubled geometry and T-folds. JHEP 07, 080 (2007). arXiv:hep-th/0605149 · doi:10.1088/1126-6708/2007/07/080
[11] Hull, C., Zwiebach, B.: Double field theory. JHEP 09, 099 (2009). arXiv:0904.4664 · doi:10.1088/1126-6708/2009/09/099
[12] Hohm, O., Hull, C., Zwiebach, B.: Background independent action for double field theory. JHEP 07, 016 (2010). arXiv:1003.5027 · Zbl 1290.81069 · doi:10.1007/JHEP07(2010)016
[13] Hohm, O., Hull, C., Zwiebach, B.: Generalized metric formulation of double field theory. JHEP 08, 008 (2010). arXiv:1006.4823 · Zbl 1291.81255 · doi:10.1007/JHEP08(2010)008
[14] Jeon, I., Lee, K., Park, J.-H., Suh, Y.: Stringy unification of type IIA and IIB supergravities under \[N=2N=2D=10\] D=10 supersymmetric double field theory. Phys. Lett. B 723, 245-250 (2013). arXiv:1210.5078 · Zbl 1311.83062 · doi:10.1016/j.physletb.2013.05.016
[15] Park, J.-H.: Comments on double field theory and diffeomorphisms. JHEP 06, 098 (2013). arXiv:1304.5946 · Zbl 1342.81464 · doi:10.1007/JHEP06(2013)098
[16] Berman, D.S., Cederwall, M., Perry, M.J.: Global aspects of double geometry. JHEP 09, 066 (2014). arXiv:1401.1311 · Zbl 1333.81286 · doi:10.1007/JHEP09(2014)066
[17] Cederwall, M.: The geometry behind double geometry. JHEP 09, 070 (2014). arXiv:1402.2513 · Zbl 1333.81287 · doi:10.1007/JHEP09(2014)070
[18] Cederwall, M.: T-duality and non-geometric solutions from double geometry. Fortsch. Phys. 62, 942-949 (2014). arXiv:1409.4463 · Zbl 1338.81317 · doi:10.1002/prop.201400069
[19] Cederwall, M.: Double supergeometry. JHEP 06, 155 (2016). arXiv:1603.04684 · Zbl 1388.83770 · doi:10.1007/JHEP06(2016)155
[20] Deser, A., Sämann, C.: Extended Riemannian geometry I: local double field theory. arXiv:1611.02772 · Zbl 1406.81072
[21] Hohm, O., Zwiebach, \[B.: L_{\infty }\] L∞ algebras and field theory. Fortsch. Phys. 65, 1700014 (2017). arXiv:1701.08824 · Zbl 1371.81261 · doi:10.1002/prop.201700014
[22] Deser, A., Sämann, C.: Derived brackets and symmetries in generalized geometry and double field theory. In 17th Hellenic School and Workshops on Elementary Particle Physics and Gravity (CORFU2017) Corfu, Greece, September 2-28, 2017. (2018). arXiv:1803.01659
[23] Hull, C.: Generalised geometry for M-theory. JHEP 0707, 079 (2007). arXiv:hep-th/0701203 · doi:10.1088/1126-6708/2007/07/079
[24] Pacheco, P.P., Waldram, D.: M-theory, exceptional generalised geometry and superpotentials. JHEP 0809, 123 (2008). arXiv:0804.1362 · Zbl 1245.83070 · doi:10.1088/1126-6708/2008/09/123
[25] Hillmann, \[C.: E_{7(7)}\] E7(7) and \[d=11\] d=11 supergravity. arXiv:0902.1509. PhD thesis, Humboldt-Universität zu Berlin (2008)
[26] Berman, D.S., Perry, M.J.: Generalized geometry and M theory. JHEP 1106, 074 (2011). arXiv:1008.1763 · Zbl 1298.81244 · doi:10.1007/JHEP06(2011)074
[27] Berman, D.S., Godazgar, H., Perry, M.J.: \[SO(5,5)\] SO(5,5) duality in M-theory and generalized geometry. Phys. Lett. B 700, 65-67 (2011). arxiv:1103.5733 · doi:10.1016/j.physletb.2011.04.046
[28] Coimbra, A., Strickland-Constable, C., Waldram, D.: \[E_{d(d)} \times \mathbb{R}^+\] Ed(d)×R+ generalised geometry, connections and M theory. JHEP 1402, 054 (2014). arXiv:1112.3989 · Zbl 1333.83220 · doi:10.1007/JHEP02(2014)054
[29] Coimbra, A., Strickland-Constable, C., Waldram, D.: Supergravity as generalised geometry II: \[E_{d(d)} \times \mathbb{R}^+\] Ed(d)×R+ and M theory. JHEP 1403, 019 (2014). arXiv:1212.1586 · Zbl 1333.83220 · doi:10.1007/JHEP03(2014)019
[30] Park, J.-H., Suh, Y.: U-geometry : SL(5). JHEP 04, 147 (2013). arXiv:1302.1652 · Zbl 1342.81465 · doi:10.1007/JHEP04(2013)147
[31] Cederwall, M., Edlund, J., Karlsson, A.: Exceptional geometry and tensor fields. JHEP 07, 028 (2013). arXiv:1302.6736 · Zbl 1342.83458 · doi:10.1007/JHEP07(2013)028
[32] Cederwall, M.: Non-gravitational exceptional supermultiplets. JHEP 07, 025 (2013). arXiv:1302.6737 · Zbl 1342.83341 · doi:10.1007/JHEP07(2013)025
[33] Aldazabal, G., Graña, M., Marqués, D., Rosabal, J.: Extended geometry and gauged maximal supergravity. JHEP 1306, 046 (2013). arXiv:1302.5419 · Zbl 1342.83439 · doi:10.1007/JHEP06(2013)046
[34] Hohm, O., Samtleben, H.: Exceptional form of \[{D}=11\] D=11 supergravity. Phys. Rev. Lett. 111, 231601 (2013). arXiv:1308.1673 · doi:10.1103/PhysRevLett.111.231601
[35] Blair, C.D., Malek, E., Park, J.-H.: M-theory and type IIB from a duality manifest action. JHEP 1401, 172 (2014). arXiv:1311.5109 · doi:10.1007/JHEP01(2014)172
[36] Hohm, O., Samtleben, H.: Exceptional field theory I: E \[_{6(6)}6(6)\] covariant form of M-theory and type IIB. Phys. Rev. D 89, 066016 (2014). arXiv:1312.0614 · doi:10.1103/PhysRevD.89.066016
[37] Hohm, O., Samtleben, H.: Exceptional field theory II: E \[_{7(7)}7(7)\]. Phys. Rev. D 89, 066017 (2014). arXiv:1312.4542 · doi:10.1103/PhysRevD.89.066017
[38] Hohm, O., Samtleben, H.: Exceptional field theory. III. \[ \text{ E }_{8(8)}\] E8(8). Phys. Rev. D 90, 066002 (2014). arXiv:1406.3348 · doi:10.1103/PhysRevD.90.066002
[39] Cederwall, M., Rosabal, J.A.: \[ \text{ E }_8\] E8 geometry. JHEP 07, 007 (2015). arXiv:1504.04843 · Zbl 1387.83080 · doi:10.1007/JHEP07(2015)007
[40] Bossard, G., Cederwall, M., Kleinschmidt, A., Palmkvist, J., Samtleben, H.: Generalized diffeomorphisms for \[E_9\] E9. Phys. Rev. D 96, 106022 (2017). arXiv:1708.08936 · doi:10.1103/PhysRevD.96.106022
[41] Wang, Y.-N.: Generalized Cartan calculus in general dimension. JHEP 07, 114 (2015). arXiv:1504.04780 · Zbl 1388.83699 · doi:10.1007/JHEP07(2015)114
[42] Baraglia, D.: Leibniz algebroids, twistings and exceptional generalized geometry. J. Geom. Phys. 62, 903-934 (2012). arXiv:1101.0856 · Zbl 1253.53081 · doi:10.1016/j.geomphys.2012.01.007
[43] Dobrev, V.K., Petkova, V.B.: Group theoretical approach to extended conformal supersymmetry: Function space realizations and invariant differential operators. Fortsch. Phys. 35, 537 (1987) · doi:10.1002/prop.2190350705
[44] Batalin, I.A., Vilkovisky, G.A.: Gauge algebra and quantization. Phys. Lett. 102B, 27-31 (1981) · doi:10.1016/0370-2693(81)90205-7
[45] Lada, T., Stasheff, J.: Introduction to SH Lie algebras for physicists. Int. J. Theor. Phys. 32, 1087-1104 (1993). arXiv:hep-th/9209099 · Zbl 0824.17024 · doi:10.1007/BF00671791
[46] Zwiebach, B.: Closed string field theory: quantum action and the B-V master equation. Nucl. Phys. B 390, 33-152 (1993). arXiv:hep-th/9206084 · doi:10.1016/0550-3213(93)90388-6
[47] Roytenberg, D., Weinstein, A.: Courant algebroids and strongly homotopy Lie algebras. arXiv:math/9802118 · Zbl 0946.17006
[48] Stasheff, J.: The (Secret?) homological algebra of the Batalin-Vilkovisky approach. Contemp. Math. 219, 195-210 (1998). arXiv:hep-th/9712157 · Zbl 0969.17012 · doi:10.1090/conm/219/03076
[49] Bering, K.: On non-commutative Batalin-Vilkovisky algebras, strongly homotopy Lie algebras and the Courant bracket. Commun. Math. Phys. 274, 297-341 (2007). arXiv:hep-th/0603116 · Zbl 1146.17015 · doi:10.1007/s00220-007-0278-3
[50] Getzler, E.: Higher derived brackets. arXiv:1010.5859 · Zbl 1368.14005
[51] Kac, V.G.: Lie superalgebras. Adv. Math. 26, 8-96 (1977) · Zbl 0366.17012 · doi:10.1016/0001-8708(77)90017-2
[52] Hohm, O., Samtleben, H.: U-duality covariant gravity. JHEP 09, 080 (2013). arXiv:1307.0509 · Zbl 1342.83378 · doi:10.1007/JHEP09(2013)080
[53] Palmkvist, J.: The tensor hierarchy algebra. J. Math. Phys. 55, 011701 (2014). arXiv:1305.0018 · Zbl 1286.81139 · doi:10.1063/1.4858335
[54] Carbone, L., Cederwall, M., Palmkvist, J.: Generators and relations for Lie superalgebras of Cartan type (to appear in J. Phys. A) arXiv:1802.05767 · Zbl 1422.83015
[55] Bossard, G., Kleinschmidt, A., Palmkvist, J., Pope, C.N., Sezgin, E.: Beyond \[E_{11}\] E11. JHEP 05, 020 (2017). arXiv:1703.01305 · Zbl 1380.83276 · doi:10.1007/JHEP05(2017)020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.