×

A geometric construction of solutions to 11D supergravity. (English) Zbl 1419.53068

The authors discuss the necessary and sufficient conditions (Theorems 2 and 3) for warped products of three-folds (\(M_3\)) and eight-folds (\(M_8\)) supporting fluxes to be solutions to the \(D=11\) supergravity equations of motion including the Duff-Stelle multi-membrane solution as well as its five-parameter non-supersymmetric deformations.
On their way to Theorems 2 and 3, in Lemma 1 the authors show that the existence of supersymmetric solutions (i.e., non-trivial sections of an 11D Spin bundle – Killing spinor) imply \(M_3\) is Einsteinian. Theorems 1–3 show that \(M_3\) is Ricci flat, and the \(M_8\) metric conformally scaled by the warp factor admits a covariantly constant spinor (or is Ricci flat) with the Levi-Civita connection constructed from the warped metric. The scalar appearing in the four-form flux ansatz is determined in terms of the warp factor and the scalar function in the warp factor is a harmonic function with respect to the original eight-dimensional metric. For simply connected eight-folds and irreducible conformal metrics therein, Theorem 4 is on a holonomy classification of the conformal eight-folds tied up to the relationship between the scalars figuring in the four-form flux and the warp factor. Given a finite set of points on the conformal eight fold and a finite set (of the same order) of positive numbers, Theorem 5 is about constructing a function in terms of Green’s function on the conformal eight-fold related to the warp factor, which would satisfy the \(D=11\) EOMs.
Examples of compact and non-compact Ricci-flat eight-folds are then discussed. The examples of eight-folds as warped products of six-folds with Riemann surfaces is discussed in detail. EOMs required the six-fold to be Ricci flat, and a warp-factor-like scalar function \(K\) constructed from a linear combination of the 11D and 8D warp-factor scalars, turns out to be harmonic on the Riemann surface. If \(K\) is a constant, the authors show that one obtains a special case of Theorem 2 – the conformal eight-fold metric is Ricci-flat – supersymmetry would further require the six-fold to be Calabi-Yau. For non-constant \(K\), some special cases are considered.
The authors then discuss the Duff-Stelle solution for multi-membrane \(D=11\) supergravity solutions (involving a Ricci-flat three-fold, a conformally flat eight-fold and the 11D and 8D warp factors and the scalar in the four-form flux, all dependent only on the radial coordinate) in their framework, by first rederiving the same. Next assuming only a conformally flat eight-fold and radial-coordinate-dependent warp factors and four-form flux components, the \(D=11\) EOMs yield a system of coupled second-order differential equations in the same. In Theorem 6, the authors show that the system is equivalent to a single third-order differential equation for a function constructed from first-order derivatives of the two scalars that figure in the 11D and 8D warp factors and the radial coordinate. (This, to the reviewer, is reminiscent of a single ordinary differential equation satisfied by a linear combination of metric perturbations invariant under infinitesimal diffeomorphisms, preserving a certain gauge, which is equivalent to a system of second-order differential equations in the individual metric perturbations.) This yields a five-parameter family of solutions to \(D=11\) supergravity. Some solutions corresponding to special cases, are explicitly obtained. The Duff-Stelle and Freund-Rubin solutions are re-obtained as special cases.

MSC:

53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics
53C80 Applications of global differential geometry to the sciences
83E50 Supergravity

References:

[1] Andriot D., Blåbäck J., van Riet T.: Minkowski flux vacua of type II supergravities. Phys. Rev. Lett. 118, 169901 (2018) · doi:10.1103/PhysRevLett.120.169901
[2] Baum, H., Friedrich, Th., Grunewald, R., Kath, I.: Twistors and Killing Spinors on Riemannian Manifolds, Teubner-Texte zur Mathematik, vol. 124. B.G. Teubner, Leipzig (1991) · Zbl 0734.53003
[3] Beauville, A.: Some remarks on Kähler manifolds with c1 = 0, Classification of algebraic and analytic manifolds (Katata, 1982) Progress in Mathematics, vol. 39, pp. 1-26. Birkhäuser, Boston (1983) · Zbl 0537.53057
[4] Becker K., Becker M.: \[{{\mathcal{M}}}\] M -theory on eight-manifolds. Nucl. Phys. B 477, 155-167 (1996) · Zbl 0925.81190 · doi:10.1016/0550-3213(96)00367-7
[5] Cheng S.-Y., Li P.W.-K.: Heat kernel estimates and lower bounds of eigenvalues. Comment. Math. Helvetici 56, 327-338 (1981) · Zbl 0484.53034 · doi:10.1007/BF02566216
[6] Clancy R.: New examples of compact manifolds with holonomy Spin(7). Ann. Global Anal. Geom. 40, 203-222 (2011) · Zbl 1245.53047 · doi:10.1007/s10455-011-9254-4
[7] Conlon R., Hein H.-J.: Asymptotically conical Calabi-Yau manifolds, I. Duke Math. J. 162, 2855-2902 (2013) · Zbl 1283.53045 · doi:10.1215/00127094-2382452
[8] Conlon R., Hein H.-J.: Asymptotically conical Calabi-Yau metrics on quasi-projective varieties. Geom. Funct. Anal. 25, 517-552 (2015) · Zbl 1333.32032 · doi:10.1007/s00039-015-0319-6
[9] Conlon, R., Rochon, F.: New examples of complete Calabi-Yau metrics on \[{{{\mathbb{C} }}^n}Cn\] for n ≥ 3. arXiv:1705.08788 · Zbl 1477.32046
[10] Cremmer E., Julia B., Scherk J.: Supergravity theory in 11 dimensions. Phys. Lett. B 76, 409-412 (1978) · Zbl 1156.83327 · doi:10.1016/0370-2693(78)90894-8
[11] D’Hoker E.: Exact M-theory solutions, integrable systems, and superalgebras. SIGMA 11, 609-628 (2015) · Zbl 1320.81062
[12] de Wit B., Nicolai H.: The consistency of the S7 truncation in d = 11 supergravity. Nucl. Phys. B 281, 211-240 (1986) · doi:10.1016/0550-3213(87)90253-7
[13] de Wit B., Smit D., Hari Dass N.D.: Residual supersymmetry of compactified d = 10 supergravity. Nucl. Phys. B 283, 165-191 (1987) · doi:10.1016/0550-3213(87)90267-7
[14] Dobarro F., Ünal B.: Curvature of multiply warped products. J. Geom. Phys. 55, 75-106 (2005) · Zbl 1089.53049 · doi:10.1016/j.geomphys.2004.12.001
[15] Duff, M.J.: The World in Eleven Dimensions: Supergravity, Supermembranes and M-theory, Studies in High Energy Physics and Cosmology. Taylor & Francis, London (1999) · Zbl 0999.00513
[16] Duff M.J., Evans J.M., Khuri R.R., Lu J.-X., Minasian R.: The octonic membrane. Nucl. Phys. B (Proc. Suppl.) 68, 295-302 (1998) · Zbl 0958.83059 · doi:10.1016/S0920-5632(98)00163-7
[17] Duff M.J., Lü H., Pope C.N., Sezgin E.: Supermembranes with fewer supersymmetries. Phys. Lett. B 371, 206-214 (1996) · doi:10.1016/0370-2693(95)01606-6
[18] Duff M.J., Nilsson B.E.W., Pope C.N.: Kaluza-Klein supergravity. Phys. Rep. 130, 1-142 (1986) · doi:10.1016/0370-1573(86)90163-8
[19] Duff M.J., Stelle K.S.: Multi-membrane solutions of D=11 supergravity. Phys. Lett. B 253, 113-118 (1991) · Zbl 1156.81443 · doi:10.1016/0370-2693(91)91371-2
[20] Englert F.: Spontaneous compactification of eleven-dimensional supergravity. Phys. Lett. B 119, 339-342 (1982) · doi:10.1016/0370-2693(82)90684-0
[21] Fei, T., Guo, B., Phong, D.H.: Parabolic dimensional reductions of 11D supergravity. arXiv:1806.00583
[22] Figueroa-O’Farrill J., Papadopoulos G.: Maximally supersymmetric solutions of ten and eleven-dimensional supergravities. JHEP 048, 25 (2003)
[23] Freund P.G.O., Rubin M.A.: Dynamics of dimensional reduction. Phys. Lett. B 97, 233-235 (1980) · doi:10.1016/0370-2693(80)90590-0
[24] Friedrich Th., Kath I., Moroianu A., Semmelmann U.: On nearly parallel G2-structures. J. Geom. Phys. 23, 259-286 (1997) · Zbl 0898.53038 · doi:10.1016/S0393-0440(97)80004-6
[25] Gauntlett J., Pakis S.: The geometry of D = 11 Killing spinors. JHEP 039, 32 (2003) · doi:10.1016/S0168-8278(03)00161-2
[26] Horava P., Witten E.: Heterotic and type I string dynamics from eleven dimensions. Nucl. Phys. B 460, 506-524 (1996) · Zbl 1004.81525 · doi:10.1016/0550-3213(95)00621-4
[27] Hull, C.M.: Supersymmetry with torsion and space-time supersymmetry. 1st Torino Meeting on Superunification and Extra Dimensions, pp. 347 - 375. World Scientific, Philadelphia (1986)
[28] Hull, C.M.: Holonomy and symmetry in M-branes. arXiv:hep-th/0305039
[29] Joyce D.: Compact Manifolds with Special Holonomy. Oxford Mathematical Monograph: Oxford University Press, Oxford (2000) · Zbl 1027.53052
[30] Li P.W.-K., Yau S.-T.: On the parabolic kernel of the Schrödinger operator. Acta Math. 156, 153-201 (1986) · Zbl 0611.58045 · doi:10.1007/BF02399203
[31] Li, Y.: A new complete Calabi-Yau metric on \[{{{\mathbb{C} }}^3}\] C3. arXiv:1705.07026 · Zbl 1422.53061
[32] Martelli D., Sparks J.: G structures, fluxes, and calibrations in M theory. Phys. Rev. D 68, 085014 (2003) · doi:10.1103/PhysRevD.68.085014
[33] Moroianu A., Semmelmann U.: Parallel spinors and holonomy groups. J. Math. Phys. 41, 2395-2402 (2000) · Zbl 0990.53051 · doi:10.1063/1.533247
[34] Pope C., van Nieuwenhuizen P.: Compactifications of d = 11 supergravity on Kähler manifolds. Commun. Math. Phys. 122, 281-292 (1989) · Zbl 0666.53057 · doi:10.1007/BF01257417
[35] Pope C., Warner N.: An SU(4) invariant compactification of d = 11 supergravity on a stretched seven-sphere. Phys. Lett. B 150, 352-356 (1985) · doi:10.1016/0370-2693(85)90992-X
[36] Prins D., Tsimpis D.: Type IIA supergravity and M-theory on manifolds with SU(4) structure. Phys. Rev. D 89, 064030 (2014) · doi:10.1103/PhysRevD.89.064030
[37] Strominger A.E.: Superstrings with torsion. Nucl. Phys. B 274, 253-284 (1986) · doi:10.1016/0550-3213(86)90286-5
[38] Székelyhidi, G.: Degenerations of \[{{{\mathbf{C} }}^n}Cn\] and Calabi-Yau metrics. arXiv:1706.00357 · Zbl 1432.32034
[39] Taylor C.J.-Y.: New examples of compact 8-manifolds of holonomy Spin(7). Math. Res. Lett. 6, 557-561 (1999) · Zbl 0961.53024 · doi:10.4310/MRL.1999.v6.n5.a8
[40] Tian G., Yau S.-T.: Complete Kähler manifolds with zero Ricci curvature, II. Invent. Math. 106, 27-60 (1991) · Zbl 0766.53053 · doi:10.1007/BF01243902
[41] Townsend P.: The eleven-dimensional supermembrane revisited. Phys. Lett. B 350, 184-188 (1995) · Zbl 1156.81456 · doi:10.1016/0370-2693(95)00397-4
[42] Tsimpis D.: M-theory on eight-manifolds revisited: \[{{\mathcal{N}}=1}N=1\] supersymmetry and genrealized Spin(7) structures. JHEP 04, 26 (2006)
[43] Witten E.: String theory dynamics in various dimensions. Nucl. Phys. B 443, 85-126 (1995) · Zbl 0990.81663 · doi:10.1016/0550-3213(95)00158-O
[44] Wang M.Y.-K.: Parallel spinors and parallel forms. Ann. Global Anal. Geom. 7, 59-68 (1989) · Zbl 0688.53007 · doi:10.1007/BF00137402
[45] Yau S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I. Commun. Pure Appl. Math. 31, 339-411 (1978) · Zbl 0369.53059 · doi:10.1002/cpa.3160310304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.