×

Universality results for kinetically constrained spin models in two dimensions. (English) Zbl 1419.82037

Summary: Kinetically constrained models (KCM) are reversible interacting particle systems on \({\mathbb{Z}^{d}}\) with continuous time Markov dynamics of Glauber type, which represent a natural stochastic (and non-monotone) counterpart of the family of cellular automata known as \({\mathcal{U}}\)-bootstrap percolation. KCM also display some of the peculiar features of the so-called “glassy dynamics”, and as such they are extensively used in the physics literature to model the liquid-glass transition, a major and longstanding open problem in condensed matter physics. We consider two-dimensional KCM with update rule \({\mathcal{U}}\), and focus on proving universality results for the mean infection time of the origin, in the same spirit as those recently established in the setting of \({\mathcal{U}}\)-bootstrap percolation. We first identify what we believe are the correct universality classes, which turn out to be different from those of \({\mathcal{U}}\)-bootstrap percolation. We then prove universal upper bounds on the mean infection time within each class, which we conjecture to be sharp up to logarithmic corrections. In certain cases, including all supercritical models, and the well-known Duarte model, our conjecture has recently been confirmed in [L. Marêché et al., “Exact asymptotics for Duarte and supercritical rooted kinetically constrained models”, arXiv:1807.07519]. In fact, in these cases our upper bound is sharp up to a constant factor in the exponent. For certain classes of update rules, it turns out that the infection time of the KCM diverges much faster than for the corresponding \({\mathcal{U}}\)-bootstrap process when the equilibrium density of infected sites goes to zero. This is due to the occurrence of energy barriers which determine the dominant behaviour for KCM, but which do not matter for the monotone bootstrap dynamics.

MSC:

82C22 Interacting particle systems in time-dependent statistical mechanics
82C43 Time-dependent percolation in statistical mechanics
82C26 Dynamic and nonequilibrium phase transitions (general) in statistical mechanics
60J25 Continuous-time Markov processes on general state spaces

References:

[1] Aldous D., Diaconis P.: The asymmetric one-dimensional constrained Ising model: rigorous results. J. Stat. Phys. 107(5-6), 945-975 (2002) · Zbl 1006.60095 · doi:10.1023/A:1015170205728
[2] Andersen H.C., Fredrickson G.H.: Kinetic Ising model of the glass transition. Phys. Rev. Lett. 53(13), 1244-1247 (1984) · doi:10.1103/PhysRevLett.53.1244
[3] Asselah A., Dai Pra P.: Quasi-stationary measures for conservative dynamics in the infinite lattice. Ann. Prob. 29(4), 1733-1754 (2001) · Zbl 1018.60092 · doi:10.1214/aop/1015345770
[4] Balister P., Bollobás B., Przykucki M.J., Smith P.: Subcritical \[{\mathcal{U}}U\]-bootstrap percolation models have non-trivial phase transitions. Trans. Am. Math. Soc. 368, 7385-7411 (2016) · Zbl 1342.60159 · doi:10.1090/tran/6586
[5] Bollobás, B., Duminil-Copin, H., Morris, R., Smith, P.: Universality of two-dimensional critical cellular automata. In: Proceedings of the London Mathematical Society (2016, to appear). arXiv:1406.6680
[6] Bollobás B., Duminil-Copin H., Morris R., Smith P.: The sharp threshold for the Duarte model. Ann. Prob. 45, 4222-4272 (2017) · Zbl 1454.60141 · doi:10.1214/16-AOP1163
[7] Blondel O., Cancrini N., Martinelli F., Roberto C., Toninelli C.: Fredrickson-Andersen one spin facilitated model out of equilibrium. Markov Proc. Rel. Fields 19, 383-406 (2013) · Zbl 1321.82025
[8] Bollobás B., Smith P., Uzzell A.: Monotone cellular automata in a random environment. Comb. Probab. Comput. 24(4), 687-722 (2015) · Zbl 1371.60170 · doi:10.1017/S0963548315000012
[9] Cancrini, N., Martinelli, F., Roberto, C., Toninelli, C.: Facilitated spin models: recent and new results, methods of contemporary mathematical statistical physics. Lecture Notes in Math., Vol. 1970, pp. 307-340. Springer, Berlin (2009) · Zbl 1180.82199
[10] Cancrini N., Martinelli F., Roberto C., Toninelli C.: Kinetically constrained spin models. Prob. Theory Rel. Fields 140(3-4), 459-504 (2008) · Zbl 1139.60343 · doi:10.1007/s00440-007-0072-3
[11] Cancrini N., Martinelli F., Schonmann R., Toninelli C.: Facilitated oriented spin models: some non equilibrium results. J. Stat. Phys. 138(6), 1109-1123 (2010) · Zbl 1188.82048 · doi:10.1007/s10955-010-9923-x
[12] Chleboun P., Faggionato A., Martinelli F.: Mixing time and local exponential ergodicity of the East-like process in \[{\mathbb{Z}^d}\] Zd. Ann. Fac. Sci. Toulouse Math. Sér 6 24(4), 717-743 (2015) · Zbl 1333.60199 · doi:10.5802/afst.1461
[13] Chleboun P., Faggionato A., Martinelli F.: Time scale separation and dynamic heterogeneity in the low temperature East model. Commun. Math. Phys. 328, 955-993 (2014) · Zbl 1294.82026 · doi:10.1007/s00220-014-1985-1
[14] Chleboun P., Faggionato A., Martinelli F.: Relaxation to equilibrium of generalized East processes on \[{\mathbb{Z}^d}\] Zd:Renormalisation group analysis and energy-entropy competition.Ann. Prob. 44(3), 1817-1863 (2016) · Zbl 1343.60135 · doi:10.1214/15-AOP1011
[15] Chung F., Diaconis P., Graham R.: Combinatorics for the East model. Adv. Appl. Math. 27(1), 192-206 (2001) · Zbl 1006.82014 · doi:10.1006/aama.2001.0728
[16] Duarte J.A.M.S.: Simulation of a cellular automaton with an oriented bootstrap rule. Phys. A. 157(3), 1075-1079 (1989) · doi:10.1016/0378-4371(89)90033-2
[17] Duminil-Copin H., van Enter A.C.D.: Sharp metastability threshold for an anisotropic bootstrap percolation model. Ann. Prob. 41, 1218-1242 (2013) · Zbl 1356.60166 · doi:10.1214/11-AOP722
[18] Duminil-Copin, H., van Enter, A.C.D., Hulshof, T.: Higher order corrections for anisotropic bootstrap percolation (2016). arXiv:1611.03294 · Zbl 1404.60149
[19] van Enter A.C.D.: Proof of Straley’s argument for bootstrap percolation. J. Stat. Phys. 48, 943-945 (1987) · Zbl 1084.82548 · doi:10.1007/BF01019705
[20] Faggionato A., Martinelli F., Roberto C., Toninelli C.: The East model: recent results and new progresses. Markov Proc. Rel. Fields 19, 407-458 (2013) · Zbl 1321.60208
[21] Faggionato A., Martinelli F., Roberto C., Toninelli C.: A ging through hierarchical coalescence in the East model. Commun. Math. Phys. 309, 459-495 (2012) · Zbl 1237.82029 · doi:10.1007/s00220-011-1376-9
[22] Garrahan, J.P., Sollich, P., Toninelli, C.: Kinetically constrained models. In: Berthier, L., Biroli, G., Bouchaud, J.-P., Cipelletti, L., van Saarloos, W. (eds.) Dynamical Heterogeneities in Glasses, Colloids, and Granular Media. Oxford University Press, Oxford (2011)
[23] Jäckle J., Eisinger S.: A hierarchically constrained kinetic Ising model. Z. Phys. B: Condens. Matter 84(1), 115-124 (1991) · Zbl 1102.82324 · doi:10.1007/BF01453764
[24] Levin D.A., Peres Y., Wilmer E.L.: Markov Chains and Mixing Times. AmericanMathematical Society, Providence (2008) · doi:10.1090/mbk/058
[25] Liggett T.M.: Interacting Particle Systems. Springer, New York (1985) · Zbl 0559.60078 · doi:10.1007/978-1-4613-8542-4
[26] Martinelli, F., Toninelli, C.: Towards a universality picture for the relaxation to equilibrium of kinetically constrained models. Ann. Prob. (2018, to appear). arXiv:1701.00107 · Zbl 1466.60210
[27] Marêché, L.,Martinelli, F.,Toninelli, C.: Exact asymptotics for Duarte and supercritical rooted kinetically constrained models. arXiv:1807.07519 · Zbl 1451.60106
[28] Mountford T.S.: Critical length for semi-oriented bootstrap percolation. Stoch. Proc. Appl. 56(2), 185-205 (1995) · Zbl 0821.60092 · doi:10.1016/0304-4149(94)00061-W
[29] Morris R.: Bootstrap percolation, and other automata. Eur. J. Combin. 66, 250-263 (2017) · Zbl 1376.82090 · doi:10.1016/j.ejc.2017.06.024
[30] Pillai N.S., Smith A.: Mixing times for a constrained Ising process on the torus at low density. Ann. Prob. 45(2), 1003-1070 (2017) · Zbl 1381.60105 · doi:10.1214/15-AOP1080
[31] Ritort F., Sollich P.: Glassy dynamics of kinetically constrained models. Adv. Phys. 52(4), 219-342 (2003) · doi:10.1080/0001873031000093582
[32] Saloff-Coste, L., Bernard, P.: Lectures on finite Markov chains. In: Bernard, P. (ed.) Lecture Notes in Mathematics, vol.1665. Springer, Berlin (1997) · Zbl 0885.60061
[33] Schonmann R.: On the behaviour of some cellular automata related to bootstrap percolation. Ann. Prob. 20, 174-193 (1992) · Zbl 0742.60109 · doi:10.1214/aop/1176989923
[34] Schonmann R.: Critical points of two-dimensional bootstrap percolation-like cellular automata. J. Stat. Phys. 58, 1239-1244 (1990) · Zbl 0712.68071 · doi:10.1007/BF01026574
[35] Sollich P., Evans M.R.: Glassy time-scale divergence and anomalous coarsening in a kinetically constrained spin chain. Phys. Rev. Lett 83, 3238-3241 (1999) · doi:10.1103/PhysRevLett.83.3238
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.