×

Limit distributions for Euclidean random permutations. (English) Zbl 1439.60015

Summary: We study the length of cycles in the model of spatial random permutations in Euclidean space. In this model, for given length \(L\), density \(\rho \), dimension \(d\) and jump density \(\varphi \), one samples \(\rho L^d\) particles in a \(d\)-dimensional torus of side length \(L\), and a permutation \(\pi \) of the particles, with probability density proportional to the product of values of \(\varphi \) at the differences between a particle and its image under \(\pi \). The distribution may be further weighted by a factor of \(\theta \) to the number of cycles in \(\pi \). Following Matsubara and Feynman, the emergence of macroscopic cycles in \(\pi \) at high density \(\rho \) has been related to the phenomenon of Bose-Einstein condensation. For each dimension \(d\ge 1\), we identify sub-critical, critical and super-critical regimes for \(\rho \) and find the limiting distribution of cycle lengths in these regimes. The results extend the work of Betz and Ueltschi. Our main technical tools are saddle-point and singularity analysis of suitable generating functions following the analysis by Bogachev and Zeindler of a related surrogate-spatial model.

MSC:

60C05 Combinatorial probability
46L53 Noncommutative probability and statistics
60F05 Central limit and other weak theorems

References:

[1] Alon, G., Kozma, G.: The probability of long cycles in interchange processes. Duke Math. J. 162(9), 1567-1585 (2013) · Zbl 1269.82041
[2] Angel, O.: Random infinite permutations and the cyclic time random walk. In: DRW, pp. 9-16 (2003) · Zbl 1073.60524
[3] Angel, O., Holroyd, A.E., Hutchcroft, T., Levy, A.: Mallows permutations as stable matchings. arXiv preprint arXiv:1802.07142 (2018) · Zbl 1493.60017
[4] Angel, O., Hutchcroft, T.: Personal communication
[5] Barbour, A.D., Granovsky, B.L.: Random combinatorial structures: the convergent case. J. Comb. Theory Ser. A 109(2), 203-220 (2005) · Zbl 1065.60143
[6] Benaych-Georges, F.: Cycles of random permutations with restricted cycle lengths. arXiv preprint arXiv:0712.1903 (2007) · Zbl 1239.60015
[7] Berestycki, N.: Emergence of giant cycles and slowdown transition in random transpositions and \[k\] k-cycles. Electron. J. Probab. 16, 152-173 (2011) · Zbl 1228.60079
[8] Betz, V., Ueltschi, D.: Spatial random permutations and infinite cycles. Commun. Math. Phys. 285(2), 469-501 (2009) · Zbl 1155.82022
[9] Betz, V., Ueltschi, D.: Spatial random permutations and Poisson-Dirichlet law of cycle lengths. Electron. J. Probab. 16, 1173-1192 (2011) · Zbl 1231.60108
[10] Betz, V., Ueltschi, D.: Spatial random permutations with small cycle weights. Probab. Theory Relat. Fields 149(1), 191-222 (2011) · Zbl 1226.82003
[11] Betz, V., Ueltschi, D., Velenik, Y.: Random permutations with cycle weights. Ann. Appl. Probab. 21(1), 312-331 (2011) · Zbl 1226.60130
[12] Bhatnagar, N., Peled, R.: Lengths of monotone subsequences in a Mallows permutation. Probab. Theory Relat. Fields 161(3-4), 719-780 (2015) · Zbl 1323.60019
[13] Biane, P., Pitman, J., Yor, M.: Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions. Bull. Am. Math. Soc. 38(4), 435-465 (2001) · Zbl 1040.11061
[14] Biskup, M., Richthammer, T.: Gibbs measures on permutations over one-dimensional discrete point sets. Ann. Appl. Probab. 25(2), 898-929 (2015) · Zbl 1314.60042
[15] Björnberg, J.: Large cycles in random permutations related to the Heisenberg model. Electron. Commun. Probab. 20(55), 1-11 (2015) · Zbl 1325.60152
[16] Bogachev, L.V., Zeindler, D.: Asymptotic statistics of cycles in surrogate-spatial permutations. Commun. Math. Phys. 334(1), 39-116 (2015) · Zbl 1318.82016
[17] Borodin, A., Diaconis, P., Fulman, J.: On adding a list of numbers (and other one-dependent determinantal processes). Bull. Am. Math. Soc. 47(4), 639-670 (2010) · Zbl 1230.05292
[18] Braverman, M., Mossel, E.: Sorting from noisy information. arXiv preprint arXiv:0910.1191 (2009) · Zbl 1192.94077
[19] Cipriani, A., Zeindler, D.: The limit shape of random permutations with polynomially growing cycle weights. Lat. Am. J. Probab. Math. Stat. 12(2), 971-999 (2015) · Zbl 1332.60048
[20] Dereich, S., Mörters, P.: Cycle length distributions in random permutations with diverging cycle weights. Random Struct. Algorithms 46(4), 635-650 (2015) · Zbl 1361.60011
[21] Diaconis, P., Shahshahani, M.: Generating a random permutation with random transpositions. Probab. Theory Relat. Fields 57(2), 159-179 (1981) · Zbl 0485.60006
[22] Ercolani, N.M., Ueltschi, D.: Cycle structure of random permutations with cycle weights. Random Struct. Algorithms 44(1), 109-133 (2014) · Zbl 1280.05004
[23] Feng, S.: The Poisson-Dirichlet Distribution and Related Topics: Models and Asymptotic Behaviors. Springer, Berlin (2010) · Zbl 1214.60001
[24] Feynman, R.P.: Atomic theory of the \[\lambda\] λ transition in helium. Phys. Rev. 91(6), 1291 (1953) · Zbl 0053.48001
[25] Gamelin, T.: Complex Analysis. Springer, Berlin (2003)
[26] Gladkich, A., Peled, R.: On the cycle structure of Mallows permutations. Ann. Probab. 46(2), 1114-1169 (2018) · Zbl 1430.60015
[27] Gnedin, A., Olshanski, G.: q-exchangeability via quasiinvariance. Ann. Probab. 38(6), 2103-2135 (2010) · Zbl 1204.60029
[28] Gnedin, A., Olshanski, G.: The two-sided infinite extension of the Mallows model for random permutations. Adv. Appl. Math. 48(5), 615-639 (2012) · Zbl 1242.60010
[29] Grafakos, L.: Classical and Modern Fourier Analysis. Prentice Hall, Englewood Cliffs (2004) · Zbl 1148.42001
[30] Hammond, A.: Infinite cycles in the random stirring model on trees. Bull. Inst. Math. Acad. Sin. (N.S.) 8(1), 85-104 (2013) · Zbl 1315.60109
[31] Hammond, A.: Sharp phase transition in the random stirring model on trees. Probab. Theory Relat. Fields 161(3-4), 429-448 (2015) · Zbl 1317.60130
[32] Henrici, P.: Applied and Computational Complex Analysis, Volume 2: Special Functions, Integral Transforms, Asymptotics, Continued Fractions, vol. 2. Wiley, New York (1991) · Zbl 0925.30003
[33] Koteckỳ, R., Miłoś, P., Ueltschi, D.: The random interchange process on the hypercube. Electron. Commun. Probab. 21(4), 1-9 (2016) · Zbl 1338.60019
[34] Lugo, M.: Profiles of permutations. Electron. J. Comb. 16(1), R99 (2009) · Zbl 1226.05027
[35] Mallows, C.L.: Non-null ranking models. I. Biometrika 44(1/2), 114-130 (1957) · Zbl 0087.34001
[36] Maples, K., Zeindler, D., Nikeghbali, A.: On the number of cycles in a random permutation. Electron. Commun. Probab. 17(20), 1-13 (2012) · Zbl 1243.60010
[37] Matsubara, T.: Quantum-statistical theory of liquid helium. Prog. Theor. Phys. 6(5), 714-730 (1951) · Zbl 0044.44707
[38] Mueller, C., Starr, S.: The length of the longest increasing subsequence of a random Mallows permutation. J. Theor. Probab. 26(2), 1-27 (2013) · Zbl 1270.60014
[39] Mukherjee, S.: Fixed points and cycle structure of random permutations. Electron. J. Probab. 21, 40 (2016) · Zbl 1343.05011
[40] Nikeghbali, A., Zeindler, D.: The generalized weighted probability measure on the symmetric group and the asymptotic behavior of the cycles. Ann. Inst. Henri Poincaré Probab. Stat. 49, 961-981 (2013) · Zbl 1284.60171
[41] Polyakov, A.: Interaction of goldstone particles in two dimensions. Applications to ferromagnets and massive Yang-Mills fields. Phys. Lett. B 59(1), 79-81 (1975)
[42] Schramm, O.: Compositions of random transpositions. Isr. J. Math. 147(1), 221-243 (2005) · Zbl 1130.60302
[43] Starr, S.: Thermodynamic limit for the Mallows model on \[S_nSn\]. J. Math. Phys. 50(9), 095208 (2009) · Zbl 1241.82039
[44] Sütő, A.: Percolation transition in the Bose gas. J. Phys. A Math. Gen. 26(18), 4689-4710 (1993)
[45] Sütő, A.: Percolation transition in the Bose gas: II. J. Phys. A Math. Gen. 35(33), 6995 (2002) · Zbl 1066.82006
[46] Timashov, A.N.: Random permutations with cycle lengths in a given finite set. Discrete Math. Appl. 18(1), 25-39 (2008) · Zbl 1174.60001
[47] Tóth, B.: Improved lower bound on the thermodynamic pressure of the spin 1/2 Heisenberg ferromagnet. Lett. Math. Phys. 28(1), 75-84 (1993) · Zbl 0772.60103
[48] Ueltschi, D.: Random loop representations for quantum spin systems. J. Math. Phys. 54(8), 083301 (2013) · Zbl 1288.82033
[49] Yakymiv, A.L.: Random A-permutations: convergence to a Poisson process. Math. Notes 81(5-6), 840-846 (2007) · Zbl 1134.60008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.