×

Grassmann-Grassmann conormal varieties, integrability, and plane partitions. (Variétés conormales Grassmann-Grassmann, intégrabilité et partitions planes.) (English. French summary) Zbl 1471.14104

Cohomological or \(K\)-theoretic classes of Schubert subvarieties of Grassmannians play an important role in enumerative geometry and representation theory. Recent works indicate the importance of replacing the Grassmannian with the total space of its cotangent bundle. The natural counterpart of a Schubert variety in this setting is the conormal bundle of a Schubert variety.
The present paper considers the classes of conormal bundles of Schubert varieties in equivariant \(K\)-theory. Moreover, and very importantly, not only the K theory class of the conormal bundle, but the representing sheave as well. The authors present a conjectured formula for that sheave, as a rectangular domain partition function. They verify the conjecture when the Schubert variety is smooth.
The authors compute that the \(K\)-theory class of their sheave is a partition function of an integrable loop model. Also, when pushed forward to a point, it is a solution to the level-1 Knizhnik-Zamolodchikov equation. The computation of the push-forward to a point is carried out by a simultaneous degeneration of the conormal bundle and of the sheave. The sheave degeneration turns out to follow the combinatorics of analogous processes for plane partitions. As result, the authors obtain a geometric interpretation of the Razumov-Stroganov correspondence.

MSC:

14M15 Grassmannians, Schubert varieties, flag manifolds
14C35 Applications of methods of algebraic \(K\)-theory in algebraic geometry
82B23 Exactly solvable models; Bethe ansatz

Software:

Macaulay2

References:

[1] Brion, Michel, Topics in cohomological studies of algebraic varieties, Lectures on the geometry of flag varieties, 33-85 (2005), Birkhäuser · Zbl 1487.14105 · doi:10.1007/3-7643-7342-3_2
[2] Cantini, Luigi; Sportiello, Andrea, Proof of the Razumov-Stroganov conjecture, J. Comb. Theory, Ser. A, 118, 5, 1549-1574 (2011) · Zbl 1232.05038 · doi:10.1016/j.jcta.2011.01.007
[3] Di Francesco, Philippe, Totally symmetric self-complementary plane partitions and the quantum Knizhnik-Zamolodchikov equation: a conjecture, J. Stat. Mech. Theory Exp., 9, 14 p. pp. (2006) · Zbl 1456.82244
[4] Di Francesco, Philippe; Zinn-Justin, Paul, Around the Razumov-Stroganov conjecture: proof of a multi-parameter sum rule, Electron. J. Comb., 12, 27 p. pp. (2005) · Zbl 1108.05013
[5] Di Francesco, Philippe; Zinn-Justin, Paul, Quantum Knizhnik-Zamolodchikov equation, generalized Razumov-Stroganov sum rules and extended Joseph polynomials, J. Phys. A, Math. Gen., 38, 48, L815-L822 (2005) · Zbl 1078.81037 · doi:10.1088/0305-4470/38/48/L02
[6] Di Francesco, Philippe; Zinn-Justin, Paul, Quantum Knizhnik-Zamolodchikov equation, Totally Symmetric Self-Complementary Plane Partitions and Alternating Sign Matrices, Theor. Math. Phys., 154, 3, 331-348 (2008) · Zbl 1192.81308 · doi:10.1007/s11232-008-0031-x
[7] Di Francesco, Philippe; Zinn-Justin, Paul; Zuber, Jean-Bernard, A bijection between classes of fully packed loops and plane partitions, Electron. J. Comb., 11, 1, 11 p. pp. (2004) · Zbl 1054.05010
[8] Eisenbud, David, Commutative algebra. With a view toward algebraic geometry, 150, xvi+785 p. pp. (1995), Springer · Zbl 0819.13001 · doi:10.1007/978-1-4612-5350-1
[9] Eisenbud, David; Sturmfels, Bernd, Binomial ideals, Duke Math. J., 84, 1, 1-45 (1996) · Zbl 0873.13021 · doi:10.1215/S0012-7094-96-08401-X
[10] Fulton, William, Introduction to toric varieties, 131, xii+157 p. pp. (1993), Princeton University Press · Zbl 0813.14039 · doi:10.1515/9781400882526
[11] Grayson, Daniel; Stillman, Michael, Macaulay2, a software system for research in algebraic geometry
[12] Kasatani, Masahiro, Subrepresentations in the polynomial representation of the double affine Hecke algebra of type \({\rm{GL}}_n\) at \(t^{k+1}q^{r-1}=1\), Int. Math. Res. Not., 2005, 28, 1717-1742 (2005) · Zbl 1122.20004 · doi:10.1155/IMRN.2005.1717
[13] Knutson, Allen; Miller, Ezra, Gröbner geometry of Schubert polynomials, Ann. Math., 161, 3, 1245-1318 (2005) · Zbl 1089.14007
[14] Knutson, Allen; Miller, Ezra; Shimozono, Mark, Four positive formulae for type \({A}\) quiver polynomials, Invent. Math., 166, 2, 229-325 (2006) · Zbl 1107.14046 · doi:10.1007/s00222-006-0505-0
[15] Knutson, Allen; Miller, Ezra; Yong, Alexander, Gröbner geometry of vertex decompositions and of flagged tableaux, J. Reine Angew. Math., 630, 1-31 (2009) · Zbl 1169.14033 · doi:10.1515/CRELLE.2009.033
[16] Knutson, Allen; Zinn-Justin, Paul, The Brauer loop scheme and orbital varieties, J. Geom. Phys., 78, 80-110 (2014) · Zbl 1326.81094 · doi:10.1016/j.geomphys.2014.01.006
[17] Maulik, Davesh; Okounkov, Andrei, Quantum groups and quantum cohomology (2012) · Zbl 1226.14069
[18] Miller, Ezra; Sturmfels, Bernd, Combinatorial commutative algebra, 227, xiv+417 p. pp. (2005), Springer · Zbl 1066.13001
[19] Pasquier, Vincent, Quantum incompressibility and Razumov Stroganov type conjectures, Ann. Henri Poincaré, 7, 3, 397-421 (2006) · Zbl 1098.81098
[20] Razumov, Alexander; Stroganov, Yu., Combinatorial nature of the ground-state vector of the \({O}(1)\) loop model, Teor. Mat. Fiz., 138, 3, 395-400 (2004) · Zbl 1178.82020 · doi:10.1023/B:TAMP.0000018450.36514.d7
[21] Rimányi, Richárd; Tarasov, Vitaly; Varchenko, Alexander, Trigonometric weight functions as K-theoretic stable envelope maps for the cotangent bundle of a flag variety (2014)
[22] Rimányi, Richárd; Tarasov, Vitaly; Varchenko, Alexander; Zinn-Justin, Paul, Extended Joseph polynomials, quantized conformal blocks, and a \(q\)-Selberg type integral, J. Geom. Phys., 62, 11, 2188-2207 (2012) · Zbl 1254.22013 · doi:10.1016/j.geomphys.2012.06.008
[23] Rosu, Ioanid, Equivariant \({K}\)-theory and equivariant cohomology, Math. Z., 243, 3, 423-448 (2003) · Zbl 1019.19003 · doi:10.1007/s00209-002-0447-1
[24] Rothbach, Brian, Borel orbits of \({X}^2=0\) in \(\mathfrak{gl}_n (2009)\)
[25] Su, Changjian, Restriction formula for stable basis of Springer resolution (2015) · Zbl 1366.14045
[26] Vezzosi, Gabriele; Vistoli, Angelo, Higher algebraic \({K}\)-theory of group actions with finite stabilizers, Duke Math. J., 113, 1, 1-55 (2002) · Zbl 1012.19002 · doi:10.1215/S0012-7094-02-11311-8
[27] Weyman, Jerzy, Cohomology of vector bundles and syzygies, 149, xiv+371 p. pp. (2003), Cambridge University Press · Zbl 1075.13007 · doi:10.1017/CBO9780511546556
[28] Wieland, Benjamin, A large dihedral symmetry of the set of alternating sign matrices, Electron. J. Comb., 7, 13 p. pp. (2000) · Zbl 0956.05015
[29] Woo, Alexander; Yong, Alexander, When is a Schubert variety Gorenstein?, Adv. Math., 207, 1, 205-220 (2006) · Zbl 1112.14058 · doi:10.1016/j.aim.2005.11.010
[30] Zinn-Justin, Paul, Proof of the Razumov-Stroganov conjecture for some infinite families of link patterns, Electron. J. Comb., 13, 1, 15 p. pp. (2006) · Zbl 1119.82018
[31] Zinn-Justin, Paul, Six-vertex, loop and tiling models: integrability and combinatorics (2009), Lambert Academic Publishing
[32] Zinn-Justin, Paul, Quiver varieties and the quantum Knizhnik-Zamolodchikov equation, Theor. Math. Phys., 185, 3, 1741-1758 (2015) · Zbl 1338.81229 · doi:10.1007/s11232-015-0376-x
[33] Zuber, Jean-Bernard, On the counting of Fully Packed Loop configurations: some new conjectures, Electron. J. Comb., 11, 1, 15 p. pp. (2004) · Zbl 1054.05011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.