×

Green functions on product networks. (English) Zbl 1418.90048

Summary: We aim here at determining the Green function for general Schrödinger operators on product networks. The first step consists in expressing Schrödinger operators on a product network as sum of appropriate Schrödinger operators on each factor network. Hence, we apply the philosophy of the separation of variables method in PDE, to express the Green function for the Schrödinger operator on a product network using Green functions on one of the factors and the eigenvalues and eigenfunctions of some Schrödinger operator on the other factor network. We emphasize that our method only needs the knowledge of eigenvalues and eigenfunctions of one of the factors, whereas other previous works need the spectral information of both factors. We apply our results to compute the Green function of \(P_m \times S_h\), where \(P_m\) is a Path with \(m\) vertices and \(S_h\) is a Star network with \(h + 1\) vertices.

MSC:

90B10 Deterministic network models in operations research
05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
31C20 Discrete potential theory
35R02 PDEs on graphs and networks (ramified or polygonal spaces)

References:

[1] Araúz, C., The Kirchhoff index of some composite networks, Discrete Appl. Math., 160, 1429-1440 (2012) · Zbl 1243.05223
[2] Araúz, C.; Carmona, Á.; Encinas, A. M., Dirichlet-to-Robin maps on finite networks, Appl. Anal. Discrete Math., 9, 85-102 (2015) · Zbl 1464.05214
[3] Bendito, E.; Carmona, A.; Encinas, A. M., Solving boundary value problems on networks using equilibrium measures, J. Funct. Anal., 171, 155-176 (2000) · Zbl 0958.31004
[4] Bendito, E.; Carmona, A.; Encinas, A. M., Potential Theory for Schrödinger operators on finite networks, Rev. Mat. Iberoamericana, 21, 771-818 (2005) · Zbl 1102.31011
[5] Bendito, E.; Carmona, A.; Encinas, A. M., The Kirchhoff index of join networks, Discrete Appl. Math., 160, 24-37 (2012) · Zbl 1237.05123
[6] Bendito, E.; Encinas, A. M.; Carmona, A., Eigenvalues, eigenfunctions and Green’s functions on a path via Chebyshev polynomials, Appl. Anal. Discrete Math., 3, 282-302 (2009) · Zbl 1257.39005
[7] Biyikoğlu, T.; Leydold, J.; Stadler, P. F., (Laplacian Eigenvectors of Graphs. Laplacian Eigenvectors of Graphs, LNM 1915 (2007), Springer: Springer Berlin) · Zbl 1129.05001
[8] Carmona, A.; Encinas, A. M.; Mitjana, M., Discrete elliptic operators and their Green operators, Linear Algebra Appl., 442, 115-134 (2014) · Zbl 1286.35085
[9] Chung, F., (Spectral Graph Theory. Spectral Graph Theory, CBMS Regional Conference Series in Mathematics, vol. 92 (1997), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI) · Zbl 0867.05046
[10] Chung, F.; Langlands, R. P., A combinatorial Laplacian with vertex weights, J. Combin. Theory Ser. A, 75, 316-327 (1996) · Zbl 0866.05039
[11] Chung, F.; Yau, S.-T., Discrete Green’s functions, J. Combin. Theory Ser. A, 91, 1-2, 191-214 (2000) · Zbl 0963.65120
[12] Conway, J. B., Functions of one Complex Variable (1978), Springer-Verlag: Springer-Verlag New York
[13] Ellis, R. B., Chip-firing Games with Dirichlet Eigenvalues and Discrete Green’s Functions (2002), University of California at San Diego, (Ph. D. Thesis)
[14] R.B. Ellis, Discrete Green’s functions on products of regular graphs. arXiv:math/0309080v2; R.B. Ellis, Discrete Green’s functions on products of regular graphs. arXiv:math/0309080v2
[15] Gilbert, A. C.; Hoskins, J. G.; Schotland, J. C., Diffuse scattering on graphs, Linear Algebra Appl., 496, 1-35 (2016) · Zbl 1331.05207
[16] Zhang, H.; Yang, Y.; Li, C., Kirchhoff index of composite graphs, Discrete Appl. Math, 157, 2918-2927 (2009) · Zbl 1209.05149
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.