×

Multi-criteria optimization and decision-making in radiotherapy. (English) Zbl 1430.90503

Summary: Radiotherapy (radiation therapy) is one of the main treatments for cancer. The aim is to deliver a prescribed radiation dose to the tumor, while keeping the unavoidable dose to the surrounding healthy organs as low as possible to minimize the probability of developing radiation induced complications. Radiotherapy treatment plan optimization strives to find machine parameters that result in desirable treatment plans. This is a large scale nonconvex multi-criteria optimization problem. In this review, we focus on the multi-criteria and decision-making aspects of radiotherapy treatment plan optimization. Shaping the 3D dose distribution within the patient involves balancing 10-30 highly correlated criteria, subject to the (in general) nonconvex mechanical machine parameters and time constraints, both in plan generation and delivery time of the treatment itself. Furthermore, each patient has a unique anatomy and unique (but unknown) radiosensitivity levels for each organ. This complicates decision-making, as the trade-offs are different for each patient, the patient-specific “safe” levels are unknown, and the interplay between different damaged organs to a physical complication is not always clear. There is no “best” plan for a patient, and decisions made are based on the insights and experience of the treating physician. In this review, we describe the use of multi-criteria and decision-making methods used in modern radiotherapy. To understand the difficulties and the many levels in which multi-criteria optimization and decision-making are involved, a thorough background is given. We also provide basic treatment planning guidelines and directions to datasets for those who wish to further explore the field of radiotherapy.

MSC:

90C29 Multi-objective and goal programming
92C50 Medical applications (general)
Full Text: DOI

References:

[1] Ahuja, R. K.; Orlin, J. B., Inverse optimization, Operations Research, 49, 771-783 (2001) · Zbl 1163.90764
[2] Alber, M.; Meedt, G.; Nüsslin, F., On the degeneracy of the IMRT optimization problem, Medical Physics, 29, 2584-2589 (2002)
[3] Alber, M.; Nüsslin, F., Optimization of intensity modulated radiotherapy under constraints for static and dynamic MLC delivery, Physics in Medicine and Biology, 46, 3229-3239 (2001)
[4] Alber, M.; Reemtsen, R., Intensity modulated radiotherapy treatment planning by use of a barrier-penalty multiplier method, Optimization Methods and Software, 22, 391-411 (2007) · Zbl 1170.90529
[5] Aleman, D. M.; Kumar, A.; Ahunja, R. K.; Romeijn, H. E.; Dempsey, J., Neighborhood search approaches to beam orientation optimization in intensity modulated radiation therapy treatment planning, Journal of Global Optimization, 42, 587-607 (2008) · Zbl 1177.90436
[6] American Cancer Society (2013). Global cancer facts & figures (3rd ed.). American Cancer Society http://www.cancer.org/acs/groups/content/@research/documents/document/acspc-044738.pdf; American Cancer Society (2013). Global cancer facts & figures (3rd ed.). American Cancer Society http://www.cancer.org/acs/groups/content/@research/documents/document/acspc-044738.pdf
[7] Andersen, E., Certificates of primal or dual infeasibility in linear programming, Computational Optimization and Applications, 20, 171-183 (2001) · Zbl 0983.90036
[8] Artacho, J.; Mellado, X.; Tobías, G.; Cruz, S.; Hernández, M., A novel unidirectional intensity map segmentation method for step-and-shoot imrt delivery with segment shape control, Physics in Medicine and Biology, 54 (2009)
[9] Arts, T.; Breedveld, S.; de Jong, M.; Astreinidou, E.; Tans, L.; Keskin-Cambay, F., The impact of treatment accuracy on proton therapy patient selection for oropharyngeal patients, Radiotherapy and Oncology, 125, 520-525 (2017)
[10] Bangert, M.; Ziegenhein, P.; Oelfke, U., Comparison of beam angle selection strategies for intracranial IMRT, Medical Physics, 40, 011716 (2013)
[11] Beetz, I.; Schilstra, C.; van der Schaaf, A.; van den Heuvel, E.; Doornaert, P.; van Luijk, P., NTCP models for patient-rated xerostomia and sticky saliva after treatment with intensity modulated radiotherapy for head and neck cancer: The role of dosimetric and clinical factors., Radiotherapy and Oncology, 105, 101-106 (2012)
[12] Bertsimas, D.; Cacchiani, V.; Craft, D.; Nohadani, O., A hybrid approach to beam angle optimization in intensity-modulated radiation therapy, Computers and Operations Research, 40, 2187-2197 (2013) · Zbl 1348.90661
[13] Bokrantz, R., Distributed approximation of Pareto surfaces in multicriteria radiation therapy treatment planning, Physics in Medicine and Biology, 58, 3501-3516 (2013)
[14] Bokrantz, R., Distributed approximation of Pareto surfaces in multicriteria radiation therapy treatment planning, Physics in Medicine and Biology, 58, 3501-3516 (2013)
[15] Bokrantz, R.; Fredriksson, A., Necessary and sufficient conditions for Pareto efficiency in robust multiobjective optimization, European Journal of Operational Research, 262, 682-692 (2017) · Zbl 1375.90270
[16] Bokrantz, R.; Miettinen, K., Projections onto the Pareto surface in multicriteria radiation therapy optimization, Medical Physics, 42, 5862 (2015)
[17] Bortfeld, T., Optimized planning using physical objectives and constraints, Seminars in Radiation Oncology, 9, 20-34 (1999)
[18] Brahme, A., Treatment optimization using physical and radiobiological objective functions, (Smith, A. R., Radiation therapy physics (1995), Berlin: Springer-Verlag), 209-246
[19] Breedveld, S. (2016). Visualised introduction to radiation therapy. http://sebastiaanbreedveld.nl/radiotherapy.html; Breedveld, S. (2016). Visualised introduction to radiation therapy. http://sebastiaanbreedveld.nl/radiotherapy.html
[20] Breedveld, S.; Heijmen, B., Data for TROTS - the radiotherapy optimisation test set, Data in Brief, 12, 143-149 (2017)
[21] Breedveld, S.; Storchi, P.; Heijmen, B., The equivalence of multi-criteria methods for radiotherapy plan optimization, Physics in Medicine and Biology, 54, 7199-7209 (2009)
[22] Breedveld, S.; Storchi, P.; Keijzer, M.; Heemink, A. W.; Heijmen, B., A novel approach to multi-criteria inverse planning for IMRT, Physics in Medicine and Biology, 52, 6339-6353 (2007)
[23] Breedveld, S.; Storchi, P.; Keijzer, M.; Heijmen, B., Fast, multiple optimizations of quadratic dose objective functions in IMRT, Physics in Medicine and Biology, 51, 3569-3579 (2006)
[24] Breedveld, S.; Storchi, P.; Voet, P.; Heijmen, B., iCycle: Integrated, multicriterial beam angle, and profile optimization for generation of coplanar and noncoplanar IMRT plans, Medical Physics, 39, 951-963 (2012)
[25] Cabrera, G.; Ehrgott, M.; Mason, A.; Raith, A., A matheuristic approach to solve the multiobjective beam angle optimization problem in intensity-modulated radiation therapy, International Transactions in Operational Research, 25, 243-268 (2016) · Zbl 1390.90492
[26] Cassioli, A.; Unkelbach, J., Aperture shape optimization for IMRT treatment planning, Physics in Medicine and Biology, 58, 301 (2012)
[27] Chan, T. C.Y.; Craig, T.; Lee, T.; Sharpe, M. B., Generalized inverse multiobjective optimization with application to cancer therapy, Operations Research, 62, 680-695 (2014) · Zbl 1302.90194
[28] Chan, T. C.Y.; Lee, T., Trade-off preservation in inverse multi-objective convex optimization, European Journal of Operational Research, 270, 25-39 (2018) · Zbl 1403.90600
[29] Chanyavanich, V.; Das, S.; Lee, W.; Lo, J., Knowledge-based IMRT treatment planning for prostate cancer, Medical Physics, 38, 2515-2522 (2011)
[30] Chen, W.; Unkelbach, J.; Trofimov, A.; Madden, T.; Kooy, H.; Bortfeld, T.; Craft, D., Including robustness in multi-criteria optimization for intensity-modulated proton therapy, Physics in Medicine and Biology, 57, 591-608 (2012)
[31] Christianen, M.; Schilstra, C.; Beetz, I.; Muijs, C.; Chouvalova, O.; Burlage, F., Predictive modelling for swallowing dysfunction after primary (chemo)radiation: Results of a prospective observational study, Radiotherapy and Oncology, 105, 107-114 (2011)
[32] Cisternas, E.; Mairani, A.; Ziegenhein, P.; Jäkel, O.; Bangert, M., matRad - a multi-modality open source 3D treatment planning toolkit, IFMBE Proceedings, 51, 1608-1611 (2015)
[33] Clark, V.; Chen, Y.; Apte, A.; Michalski, J.; Deasy, J., Prioritized prescription IMRT optimization: A comparison with Pinnacle planning results, Proceedings of the XVI international conference on use of computers in radiation therapy (2010), Amsterdam, The Netherlands)
[34] Clark, V.; Chen, Y.; Wilkens, J.; Alaly, J.; Zakaryan, K.; Deasy, J., IMRT treatment planning for prostate cancer using prioritized prescription optimization and mean-tail-dose functions, Linear Algebra and its Applications, 428, 1345-1364 (2008) · Zbl 1195.92032
[35] Cotrutz, C.; Lahanas, M.; Kappas, C.; Baltas, D., A multiobjective gradient-based dose optimization algorithm for external beam conformal radiotherapy, Physics in Medicine and Biology, 46, 2161-2175 (2001)
[36] Craft, D.; Bangert, M.; Long, T.; Papp, D.; Unkelbach, J., Shared data for intensity modulated radiation therapy (IMRT) optimization research: The CORT dataset, Gigascience (2014)
[37] Craft, D.; Bortfeld, T., How many plans are needed in an IMRT multi-objective plan database?, Physics in Medicine and Biology, 53, 2785-2796 (2008)
[38] Craft, D.; Khan, F.; Young, M.; Bortfeld, T., The price of target dose uniformity, International Journal of Radiation Oncology Biology Physics, 96, 913-914 (2016)
[39] Craft, D.; Monz, M., Simultaneous navigation of multiple Pareto surfaces, with an application to multicriteria IMRT planning with multiple beam angle configurations, Medical Physics, 37, 736-741 (2010)
[40] Craft, D.; Papp, D.; Unkelbach, J., Plan averaging for multicriteria navigation of sliding window IMRT and VMAT, Medical Physics, 021709 (2014)
[41] Craft, D.; Richter, C., Deliverable navigation for multicriteria step and shoot IMRT treatment planning, Physics in Medicine and Biology, 87-103 (2013)
[42] Craft, D.; Süss, P.; Bortfeld, T., The tradeoff between treatment plan quality and required number of monitor units in intensity-modulated radiotherapy, International Journal of Radiation Oncology Biology Physics, 67, 1596-1605 (2007)
[43] Craft, D. L.; Halabi, T. F.; Bortfeld, T. R., Exploration of tradeoffs in intensity-modulated radiotherapy, Physics in Medicine and Biology, 50, 5857-5868 (2005)
[44] Craft, D. L.; Halabi, T. F.; Shih, H. A.; Bortfeld, T. R., Approximating convex Pareto surfaces in multiobjective radiotherapy planning, Medical Physics, 33, 3399-3407 (2006)
[45] Craft, D. L.; Hong, T. S.; Shih, H. A.; Bortfeld, T. R., Improved planning time and plan quality through multicriteria optimization for intensity-modulated radiotherapy, International Journal of Radiation Oncology Biology Physics, e83-e90 (2012)
[46] Deasy, J.; Blanco, A.; Clark, V., CERR: A computational environment for radiotherapy research, Medical Physics, 30, 979-985 (2003)
[47] Dijkema, T.; Raaijmakers, C. P.J.; Ten Haken, R. K.; Roesink, J. M.; Braam, P. M.; Houweling, A. C., Parotid gland function after radiotherapy: The combined Michigan and Utrecht experience, International Journal of Radiation Oncology Biology Physics, 78, 449-453 (2010)
[48] Dong, P.; Lee, P.; Ruan, D.; Long, T.; Romeijn, E.; Yang, Y., 4Pi non-coplanar liver SBRT: A novel delivery technique, International Journal of Radiation Oncology Biology Physics, 85, 1360-1366 (2012)
[49] Ehrgott, M.; Holder, A.; Reese, J., Beam selection in radiotherapy design, Linear Algebra and its Applications, 428, 1272-1312 (2008) · Zbl 1195.92034
[50] Ehrgott, M.; Ide, J.; Schöbel, A., Minmax robustness for multi-objective optimization problems, European Journal of Operational Research, 239, 17-31 (2014) · Zbl 1339.90296
[51] Falkinger, M.; Schell, S.; Müller, J.; Wilkens, J., Prioritized optimization in intensity modulated proton therapy, Zeitschrift fr Medizinische Physik, 22, 21-28 (2010)
[52] Fiege, J.; McCurdy, B.; Potrebko, P.; Champion, H.; Cull, A., PARETO: A novel evolutionary optimization approach to multiobjective IMRT planning, Medical Physics, 38, 5217-5229 (2011)
[53] Fredriksson, A., Automated improvement of radiation therapy treatment plans by optimization under reference dose constraints, Physics in Medicine and Biology, 52, 7799-7811 (2012)
[54] Fredriksson, A.; Bokrantz, R., Deliverable navigation for multicriteria IMRT teatment planning by combining shared and individual apertures, Physics in Medicine and Biology, 58, 7683-7697 (2013)
[55] Fredriksson, A.; Forsgren, A.; Hårdemark, B., Minimax optimization for handling range and setup uncertainties in proton therapy, Medical Physics, 38, 1672-1684 (2011)
[56] Galvin, J.; Chen, X.; Smith, R., Combining multileaf fields to modulate fluence distributions, International Journal of Radiation Oncology Biology Physics, 27, 697-705 (1993)
[57] Haimes, Y. Y.; Lasdon, L. S.; Wismer, D. A., On a bicriterion formulation of the problems of integrated system identification and system optimization, IEEE Transactions on Systems, Man, and Cybernetics, 1, 296-297 (1971) · Zbl 0224.93016
[58] Hamacher, H. W.; Küfer, K., Inverse radiation therapy planning - a multiple objective optimization approach, Discrete Applied Mathematics, 118, 145-161 (2002) · Zbl 0995.92024
[59] van Haveren, R.; Breedveld, S.; Keijzer, M.; Voet, P.; Heijmen, B.; Ogryczak, W., Lexicographic extension of the reference point method applied in radiation therapy treatment planning, European Journal of Operational Research, 263, 247-257 (2017) · Zbl 1380.90307
[60] van Haveren, R.; Ogryczak, W.; Verduijn, G.; Keijzer, M.; Heijmen, B.; Breedveld, S., Fast and fuzzy multi-objective radiotherapy treatment plan generation for head-and-neck cancer patients with the lexicographic reference point method (LRPM), Physics in Medicine and Biology, 62, 4318 (2017)
[61] Heijmen, B.; Voet, P.; Fransen, D.; Penninkhof, J.; Milder, M.; Akhiat, H.; Bonomo, P.; Casati, M.; Georg, D.; Goldner, G.; Henry, A.; Lilley, J.; Lohr, F.; Marrazzo, L.; Pallotta, S.; Pellegrini, R.; Seppenwoolde, Y.; Simontacchi, G.; Steil, V.; Stieler, F.; Wilson, S.; Breedveld, S., Fully automated, multi-criterial planning for volumetric modulated arc therapy - An international multi-center validation for prostate cancer, Radiotherapy and Oncology, 128, 343-348 (2018)
[62] van Herk, M., Errors and margins in radiotherapy, Seminars in Radiation Oncology, 14, 52-64 (2004)
[63] Hoffmann, A. L.; Siem, A. Y.D.; den Hertog, D.; Kaanders, J. H.A. M.; Huizenga, H., Derivative-free generation and interpolation of convex Pareto optimal IMRT plans, Physics in Medicine and Biology, 51, 6349-6369 (2006)
[64] Holdsworth, C.; Stewart, R. D.; Kim, M.; Liao, J.; Phillips, M. H., Investigation of effective decision criteria for multiobjective optimization in IMRT, Medical Physics, 38, 2947-2964 (2011)
[65] Huizenga, H.; Hoffmann, A.; Kaanders, J.; Stalmeijer, P.; van Tol-Geerdink, J., Inclusion of individual patient preferences into the radiotherapy treatment planning process, Proceedings of the XV international conference on use of computers in radiation therapy, 1, 362-365 (2007), Toronto, Canada
[66] ICRU Report 83, Prescribing, recording, and reporting photon-beam intensity-modulated radiation therapy (IMRT), 10 (2010), Oxford University Press: Oxford University Press Avenel, NJ
[67] Jee, K.-W.; McShan, D. L.; Fraass, B. A., Lexicographic ordering: Intuitive multicriteria optimization for IMRT, Physics in Medicine and Biology, 52, 1845-1861 (2007)
[68] Jia, X.; Ziegenhein, P.; Jiang, S. B., GPU-based high-performance computing for radiation therapy, Physics in Medicine and Biology, 59, R151-R182 (2014)
[69] Jin, R.; Min, Z.; Song, E.; Liu, H.; Ye, Y., A novel fluence map optimization model incorporating leaf sequencing constraints, Physics in Medicine and Biology, 55, 1243-1264 (2010)
[70] Kamerling, C.; Ziegenhein, P.; Sterzing, F.; Oelfke, U., Interactive dose shaping part 2: Proof of concept study for six prostate patients, Physics in Medicine and Biology, 61, 2471-2484 (2016)
[71] Kamran, S.; Mueller, B.; Paetzold, P.; Dunlap, J.; Niemierko, A.; Bortfeld, T., Multi-criteria optimization achieves superior normal tissue sparing in a planning study of intensity-modulated radiation therapy for RTOG 1308-eligible non-small cell lung cancer patients, Radiotherapy and Oncology, 118, 515-520 (2016)
[72] Keshavarz, A.; Wang, Y.; Boyd, S., Imputing a convex objective function, IEEE International Symposium on Intelligent Control (ISIC), -, 613-619 (2011)
[73] Kessler, M. L.; Mcshan, D. L.; Epelman, M. A.; Vineberg, K. A.; Eisbruch, A.; Lawrence, T. S., Costlets: A generalized approach to cost functions for automated optimization of IMRT treatment plans, Optimization and Engineering, 6, 421-448 (2005) · Zbl 1168.92313
[74] Kierkels, R.; Visser, R.; Bijl, H.; Langendijk, J.; van ’t Veld, A.; Steenbakkers, R., Multicriteria optimization enables less experienced planners to efficiently produce high quality treatment plans in head and neck cancer radiotherapy, Radiotherapy and Oncology, 10, 85 (2015)
[75] Kraan, A.; van de Water, S.; Teguh, D.; Al-Mamgani, A.; Madden, T.; Kooy, H., Dose uncertainties in IMPT for oropharyngeal cancer in the presence of anatomical, range, and setup errors, International Journal of Radiation Oncology Biology Physics, 87, 888-896 (2013)
[76] Lee, E. K.; Fox, T.; Crocker, I., Simultaneous beam geometry and intensity map optimization in intensity-modulated radiation therapy, International Journal of Radiation Oncology Biology Physics, 64, 1325-1337 (2006)
[77] Lee, T.-F.; Chao, P.-J.; Chang, L.; Ting, H.-M.; Huang, Y.-J., Developing multivariable normal tissue complication probability model to predict the incidence of symptomatic radiation pneumonitis among breast cancer patients, PLoS ONE (2015)
[78] Lim, G.; Kardar, L.; Cao, W., A hybrid framework for optimizing beam angles in radiation therapy planning, Annals of Operations Research, 217, 357-383 (2014) · Zbl 1303.90073
[79] Lin, K.-M.; Ehrgott, M.; Raith, A., Integrating column generation in a method to compute a discrete representation of the non-dominated set of multi-objective linear programmes, 4OR-A Quarterly Journal of Operations Research, 15, 331-357 (2017) · Zbl 1387.90235
[80] Liu, H.; Wang, X.; Dong, L.; Wu, Q.; Liao, Z.; Stevens, C., Feasibility of sparing lung and other thoracic structures with intensity-modulated radiotherapy for nonsmall-cell lung cancer, International Journal of Radiation Oncology Biology Physics, 58, 1268-1279 (2004)
[81] Long, T.; Matuszak, M.; Feng, M.; Fraass, B.; Ten Haken, R.; Romeijn, H., Sensitivity analysis for lexicographic ordering in radiation therapy treatment planning, Medical Physics, 39, 3445-3455 (2012)
[82] Luan, S.; Wang, C.; Cao, D.; Chen, D.; Shepard, D.; Yu, C., Leaf-sequencing for intensity-modulated arc therapy using graph algorithms, Medical Physics, 35, 61-69 (2008)
[83] matRad (2016). matRad: An open source multi-modality radiation treatment planning system. https://github.com/e0404/matRad; matRad (2016). matRad: An open source multi-modality radiation treatment planning system. https://github.com/e0404/matRad
[84] Matuszak, M. M.; Larsen, E. W.; Jee, K.-W.; McShan, D. L.; Fraass, B. A., Adaptive diffusion smoothing: A diffusion-based method to reduce IMRT field complexity, Medical Physics, 35, 1532-1546 (2008)
[85] McGarry, C.; Bokrantz, R.; O’Sullivan, J.; Hounsell, A., Advantages and limitations of navigation-based multicriteria optimization (MCO) for localized prostate cancer IMRT planning, Medical Dosimetry, 39, 205-211 (2014)
[86] Meirovitz, M.; Murdoch-Kinch, A.; Schipper, M.; Pan, C.; A, E., Grading xerostomia by physicians or by patients after intensity-modulated radiotherapy of head-and-neck cancer, International Journal of Radiation Oncology Biology Physics, 66, 445-453 (2006)
[87] Men, C.; Jia, X.; Jiang, S., GPU-based ultra-fast direct aperture optimization for online adaptive radiation therapy, Physics in Medicine and Biology, 55, 4309-4320 (2010)
[88] Men, C.; Romeijn, E.; Taşkin, C.; Dempsey, J., An exact approach to direct aperture optimization in IMRT treatment planning, Physics in Medicine and Biology, 52, 7333-7352 (2007)
[89] Messac, A.; Mattson, C., Normal constraint method with guarantee of even representation of complete Pareto frontier, AIAA Journal, 42, 2101-2111 (2004)
[90] Michalski, J.; Gay, H.; Jackson, A.; Tucker, S.; Deasy, J., Radiation dose-volume effects in radiation-induced rectal injury, International Journal of Radiation Oncology Biology Physics, 76, 3, S123-S129 (2010)
[91] Miettinen, K., Nonlinear multiobjective optimization (1999), Boston: Kluwer Academic Publishers · Zbl 0949.90082
[92] Mis̆ić, V.; Aleman, D.; Sharpe, M., Neighborhood search approaches to non-coplanar beam orientation optimization for total marrow irradiation using IMRT, European Journal of Operational Research, 205, 522-527 (2010) · Zbl 1188.90288
[93] Monz, M.; Küfer, K.-H.; Bortfeld, T. R.; Thieke, C., Pareto navigation - algorithmic foundation of interactive multi-criteria IMRT planning, Physics in Medicine and Biology, 53, 985-998 (2008)
[94] Nahum, A., The radiobiology of hypofractionation, Clinical Oncology, 27, 260-269 (2015)
[95] Nguyen, D.; O’Connor, D.; Yu, V.; Ruan, D.; Cao, M.; Low, D., Dose domain regularization of mlc leaf patterns for highly complex IMRT plans, Medical Physics, 42, 1858-1870 (2015)
[96] Ogryczak, W.; Kozłowski, B., Reference point method with importance weighted ordered partial achievements, Top, 19, 380-401 (2011) · Zbl 1262.90073
[97] Otto, K., Volumetric modulated arc therapy: IMRT in a single gantry arc, Medical Physics, 35, 310-317 (2008)
[98] Otto, K., Real-time interactive treatment planning, Physics in Medicine and Biology, 59, 4845-4859 (2014)
[99] Pascoletti, A.; Serafini, P., Scalarizing vector optimization problems, Journal of Optimization Theory and Applications, 42, 499-524 (1984) · Zbl 0505.90072
[100] Peng, F.; Jia, X.; Gu, X.; Epelman, M. A.; Romeijn, H. E.; Jiang, S. B., A new column-generation-based algorithm for VMAT treatment plan optimization, Physics in Medicine and Biology, 57, 4569-4588 (2012)
[101] Petit, S. F.; Wu, B.; Kazhdan, M.; Dekker, A.; Simari, P.; Kumar, R., Increased organ sparing using shape-based treatment plan optimization for intensity modulated radiation therapy of pancreatic adenocarcinoma, Radiotherapy and Oncology, 102, 38-44 (2012)
[102] Potrebko, P.; Fiege, J.; Biagioli, M.; Poleszczuk, J., Investigating multi-objective fluence and beam orientation IMRT optimization, Physics in Medicine and Biology, 62, 5228-5244 (2017)
[103] Rennen, G.; van Dam E, E.; den Hertog, D., Enhancement of sandwich algorithms for approximating higher-dimensional convex Pareto sets, INFORMS Journal on Computing, 23, 493-517 (2011) · Zbl 1243.90204
[104] Rocha, H.; Dias, J.; Ventura, T.; Ferreira, B.; Lopes, M., A derivative-free multistart framework for an automated noncoplanar beam angle optimization in IMRT, Medical Physics, 43, 5514-5526 (2016)
[105] Romeijn, H. E.; Ahuja, R. K.; Dempsey, J. F.; Kumar, A., A column generation approach to radiation therapy treatment planning using aperture modulation, SIAM Journal on Optimization, 15, 838-862 (2005) · Zbl 1077.90084
[106] Romeijn, H. E.; Dempsey, J. F.; Li, J. G., A unifying framework for multi-criteria fluence map optimization models, Physics in Medicine and Biology, 49, 1991-2013 (2004)
[107] Rossi, L.; Breedveld, S.; Aluwini, S.; Heijmen, B., Non-coplanar beam angle class solutions to replace time-consuming patient-specific beam angle optimization in robotic prostate SBRT, International Journal of Radiation Oncology Biology Physics, 92, 762-770 (2015)
[108] Rossi, L.; Breedveld, S.; Heijmen, B. J.M.; Voet, P. W.J.; Lanconelli, N.; Aluwini, S., On the beam direction search space in computerized non-coplanar beam angle optimization for IMRT - prostate SBRT, Physics in Medicine and Biology, 57, 5441-5458 (2012)
[109] van Santvoort, J. P.C.; Heijmen, B. J.M., Dynamic multileaf collimation without ‘tongue-and-groove’ underdosage effects, Physics in Medicine and Biology, 41, 2091-2105 (1996)
[110] Seppenwoolde, Y.; Lebesque, J.; de Jaeger, K.; Belderbos, J.; Boersma, L.; Schilstra, C., Comparing different NTCP models that predict the incidence of radiation pneumonitis, International Journal of Radiation Oncology Biology Physics, 55, 724-735 (2003)
[111] Shao, L.; Ehrgott, M., Approximately solving multiobjective linear programmes in objective space and an application in radiatherapy treatment planning, Mathematical Methods of Operations Research, 68, 257-276 (2008) · Zbl 1211.90217
[112] Shao, L.; Ehrgott, M., Discrete representation of non-dominated sets in multi-objective linear programming, European Journal of Operational Research, 255, 687-698 (2016) · Zbl 1394.90519
[113] Sharfo, A.-W.; Breedveld, S.; Voet, P. W.J.; Heijkoop, S. T.; Mens, J.-W. M.; Hoogeman, M. S., Validation of fully automated VMAT plan generation for library-based plan-of-the-day cervical cancer radiotherapy, PLoS ONE, 11, e0169202 (2016)
[114] Sharfo, A.-W.; Dirkx, M.; Breedveld, S.; Méndez Romero, A.; Heijmen, B., VMAT plus a few computer-optimized non-coplanar IMRT beams (VMAT+) tested for liver SBRT, Radiotherapy and Oncology, 123, 49-56 (2017)
[115] Sharfo, A.-W.; Voet, P.; Breedveld, S.; Mens, J.-W.; Hoogeman, M.; Heijmen, B., Comparison of VMAT and IMRT strategies for cervical cancer patients using automated planning, Radiotherapy and Oncology, 114, 395-401 (2015)
[116] Smith, W.; Kim, M.; Holdsworth, C.; Liao, J.; Phillips, M., Personalized treatment planning with a model of radiation therapy outcomes for use in multiobjective optimization of IMRT plans for prostate cancer, Radiotherapy and Oncology, 11:38 (2016)
[117] Spalke, T.; Craft, D.; Bortfeld, T., Analyzing the main trade-offs in multiobjective radiation therapy treatment planning databases, Physics in Medicine and Biology, 4, 3741-3754 (2009)
[118] Süss, P.; Bortz, M.; Küfer, K.-H.; Thieke, C., The critical spot eraser - a method to interactively control the correction of local hot and cold spots in IMRT planning, Physics in Medicine and Biology, 58, 1855-1867 (2013)
[119] Teichert, K.; Süss, P.; Serna, J. I.; Monz, M.; Küfer, K-H.; Thieke, C., Comparative analysis of pareto surfaces in multi-criteria IMRT planning, Physics in Medicine and Biology, 56, 3669-3684 (2011)
[120] TROTS (2016). TROTS - the radiotherapy optimisation test set. http://www.erasmusmc.nl/radiotherapytrots/; TROTS (2016). TROTS - the radiotherapy optimisation test set. http://www.erasmusmc.nl/radiotherapytrots/
[121] Unkelbach, J.; Bortfeld, T.; Craft, D.; Alber, M.; Bangert, M.; Bokrantz, R., Optimization approaches to volumetric modulated arc therapy planning, Medical Physics, 42, 1367 (2015)
[122] Unkelbach, J.; Chan, T. C.Y.; Bortfeld, T., Accounting for range uncertainties in the optimization of intensity modulated proton therapy, Physics in Medicine and Biology, 52, 2755-2773 (2007)
[123] Viswanathan, A.; Yorke, E.; Marks, L.; Eifel, P.; Shipley, W., Radiation dose-volume effects of the urinary bladder, International Journal of Radiation Oncology Biology Physics, 76, S116-S122 (2010)
[124] Voet, P.; Dirkx, M.; Breedveld, S.; Al-Mamgani, A.; Incrocci, L.; Heijmen, B., Fully automated VMAT plan generation for prostate cancer patients, International Journal of Radiation Oncology Biology Physics, 88, 1175-1179 (2014)
[125] Voet, P.; Dirkx, M.; Breedveld, S.; Fransen, D.; Levendag, P.; Heijmen, B., Towards fully automated multi-criterial plan generation: A prospective clinical study, International Journal of Radiation Oncology Biology Physics, 85, 866-872 (2013)
[126] Wahl, N.; Bangert, M.; Kamerling, C.; Ziegenhein, P.; Bol, G.; Raaymakers, B., Physically constrained voxel-based penalty adaptation for ultra-fast IMRT planning, Journal of Applied Clinical Medical Physics, 17, 172-189 (2016)
[127] Wang, Y.; Breedveld, S.; Heijmen, B.; Petit, S., Evaluation of plan quality assurance models for prostate cancer patients based on fully automatically generated pareto-optimal treatment plans, Physics in Medicine and Biology, 61, 4268 (2016)
[128] van de Water, S.; Kooy, H.; Heijmen, B.; Hoogeman, M., Shortening delivery times of intensity modulated proton therapy by reducing proton energy layers during treatment plan optimization, International Journal of Radiation Oncology Biology Physics, 92, 460-468 (2015)
[129] Webb, S., Intensity-modulated radiation therapy (2015), CRC Press
[130] Webb, S.; Convery, D. J.; Evans, P. M., Inverse planning with constraints to generate smoothed intensity-modulated beams, Physics in Medicine and Biology, 43, 2785-2794 (1998)
[131] Widesott, L.; Strigari, L.; Pressello, M.; Benassi, M.; Landoni, V., Role of the parameters involved in the plan optimization based on the generalized equivalent uniform dose and radiobiological implications, Physics in Medicine and Biology, 53, 1665-1675 (2008)
[132] Wild, E.; Bangert, M.; Nill, S.; Oelfke, U., Noncoplanar VMAT for nasopharyngeal tumors: Plan quality versus treatment time, Medical Physics, 42, 2157 (2015)
[133] Wilkens, J. J.; Alaly, J. R.; Zakarian, K.; Thorstad, W. L.; Deasy, J. O., IMRT treatment planning based on prioritizing prescription goals, Physics in Medicine and Biology, 52, 1675-1692 (2007)
[134] Wopken, K.; Bijl, H.; van der Schaaf, A.; van der Laan, H. P.; Chouvalova, O.; Steenbakkers, R., Development of a multivariable normal tissue complication probability (NTCP) model for tube feeding dependence after curative radiotherapy/chemo-radiotherapy in head and neck cancer, Radiotherapy and Oncology, 113, 95-101 (2014)
[135] World Health Organization (2012). GLOBOCAN - estimated incidence, mortality and prevalence worldwide. http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx; World Health Organization (2012). GLOBOCAN - estimated incidence, mortality and prevalence worldwide. http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx
[136] Wu, B.; Kusters, M.; Kunze-Busch, M.; Dijkema, T.; McNutt, T.; Sanguineti, G., Cross-institutional knowledge-based planning (KBP) implementation and its performance comparison to Auto-Planning Engine (APE), Radiotherapy and Oncology, 123, 1, 57-62 (2017)
[137] Wu, B.; Ricchetti, F.; Sanguineti, G.; Kazhdan, M.; Simari, P.; Jacques, R., Data-driven approach to generating achievable dose-volume histogram objectives in intensity-modulated radiotherapy planning, International Journal of Radiation Oncology Biology Physics, 79, 1241-1247 (2011)
[138] Zarepisheh, M.; Long, T.; Li, N.; Tian, Z.; Romeijn, H. E.; Jia, X., A DVH-guided IMRT optimization algorithm for automatic treatment planning and adaptive radiotherapy replanning, Medical Physics, 41, 061711 (2014)
[139] Zarepisheh, M.; Uribe-Sanchez, A.; Li, N.; Jia, X.; Jiang, S., A multicriteria framework with voxel-dependent parameters for radiotherapy treatment plan optimization, Medical Physics, 41, 041705 (2014)
[140] Zhu, L.; Lee, L.; Ma, Y.; Ye, Y.; Mazzeo, R.; Xing, L., Using total-variation regularization for intensity modulated radiation therapy inverse planning with field-specific numbers of segments, Physics in Medicine and Biology, 53, 6653-6672 (2008)
[141] Ziegenhein, P.; Kamerling, C.; Oelfke, U., Interactive dose shaping part 1: A new paradigm for IMRT treatment planning, Physics in Medicine and Biology, 61, 2457-2470 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.