×

Selfishness versus functional cooperation in a stochastic protocell model. (English) Zbl 1414.92201

Summary: How to design an “evolvable” artificial system capable to increase in complexity? Although Darwin’s theory of evolution by natural selection obviously offers a firm foundation, little hope of success seems to be expected from the explanatory adequacy of modern evolutionary theory, which does a good job at explaining what has already happened but remains practically helpless at predicting what will occur. However, the study of the major transitions in evolution clearly suggests that increases in complexity have occurred on those occasions when the conflicting interests between competing individuals were partly subjugated. This immediately raises the issue about “levels of selection” in evolutionary biology, and the idea that multi-level selection scenarios are required for complexity to emerge. After analyzing the dynamical behaviour of competing replicators within compartments, we show here that a proliferation of differentiated catalysts and/or improvement of catalytic efficiency of ribozymes can potentially evolve in properly designed artificial cells where the strong internal competition between the different species of replicators is somewhat prevented (i.e., by choosing them with equal probability). Experimental evolution in these systems will likely stand as beautiful examples of artificial adaptive systems, and will provide new insights to understand possible evolutionary paths to the evolution of metabolic complexity.

MSC:

92D15 Problems related to evolution
92B20 Neural networks for/in biological studies, artificial life and related topics

References:

[1] Agresti, J. J.; Kelly, B. T.; Jäschke, A.; Griffiths, A. D., Selection of ribozymes that catalyze multiple-turnover Diels-Alder cycloadditions by using in vitro compartmentalization, Proc. Natl. Acad. Sci. USA, 102, 16170-16175 (2005)
[2] Beeby, R.; Kacser, H., Metabolic constraints in evolution, (Maynard Smith, J.; Vida, G., Organizational Constraints on the Dynamics of Evolution (1990), Manchester University Press: Manchester University Press Manchester), 1-22
[3] Bell, G., The Basics of Selection (1997), Chapman & Hall: Chapman & Hall New York
[4] Biebricher, C. K.; Eigen, M.; Gardiner, W. C., Kinetics of RNA replication: plus-minus strand asymmetry and double-strand formation, Biochemistry, 23, 3186-3194 (1984)
[5] Branciamore, S.; Gallori, E.; Szathmáry, E.; Czárán, T., The origin of life: chemical evolution of a metabolic system in a mineral honeycomb?, J. Mol. Evol., 69, 458-469 (2009)
[6] Chen, I.; Roberts, R. W.; Szostak, J. W., The emergence of competition between model protocells, Science, 305, 1474-1476 (2004)
[7] Compaq Visual Fortran Professional Edition 6.6.0, 2000. Polyhedron Software Ltd., Witney, UK. 〈http://www.polyhedron.co.uk/〉.; Compaq Visual Fortran Professional Edition 6.6.0, 2000. Polyhedron Software Ltd., Witney, UK. 〈http://www.polyhedron.co.uk/〉.
[8] Crow, J. F., Genetic loads and the cost of natural selection, (Kojima, K. I., Mathematical Topics in Population Genetics (1970), Springer-Verlag: Springer-Verlag Berlin), 128-177
[9] Deamer, D., A giant step towards artificial life?, Trends Biotechnol., 23, 336-338 (2005)
[10] Drake, J. W., Rates of spontaneous mutation among RNA viruses, Proc. Natl. Acad. Sci. USA, 90, 4171-4175 (1993)
[11] Ewens, W. J., Mathematical Population Genetics (1979), Springer-Verlag: Springer-Verlag New York · Zbl 0422.92011
[12] Fontanari, J. F.; Santos, M.; Szathmáry, E., Coexistence and error propagation in package models: a group selection approach, J. Theor. Biol., 239, 247-256 (2006) · Zbl 1445.92192
[13] Gánti, T., Az Élet Princípuma (The Principle of Life) (1971), Gondolat: Gondolat Budapest
[14] Gánti, T., The Principles of Life (2003), Oxford University Press: Oxford University Press Oxford
[15] Grey, D.; Hutson, V.; Szathmáry, E., A re-examination of the stochastic corrector model, Proc. R. Soc. London B, 262, 29-35 (1995)
[16] Haldane, J. B.S., The effect of variation on fitness, Am. Nat., 71, 337-349 (1937)
[17] (Herold, K. E.; Rasooly, A., Lab-on-a-Chip Technology: Fabrication and Microfluidics (2009), Caister Academic Press)
[18] Kacser, H.; Beeby, R., Evolution of catalytic proteins or on the origin of enzyme species by means of natural selection, J. Mol. Evol., 20, 38-51 (1984)
[19] Kacser, H.; Burns, J. A., The control of flux, Symp. Soc. Exp. Biol, 27, 65-104 (1973)
[20] Koch, A. L., Evolution vs. the number of gene copies per primitive cell, J. Mol. Evol., 20, 71-76 (1984)
[21] Kondo, M.; Weissmann, C., Inhibition of Q \(β\) replicase by excess template, Eur. J. Biochem., 24, 530-537 (1972)
[22] Könnyű, B.; Czárán, T.; Szathmáry, E., Prebiotic replicase evolution in a surface-bound metabolic system: parasites as a source of adaptive evolution, BMC Evol. Biol., 8, 267 (2008)
[23] Kun, Á.; Santos, M.; Szathmáry, E., Real ribozymes suggest a relaxed error threshold, Nat. Genet., 37, 1008-1011 (2005)
[24] Luisi, P. L., The Emergence of Life: From Chemical Origins to Synthetic Biology (2006), Cambridge University Press: Cambridge University Press Cambridge
[25] Luisi, P. L., Chemical aspects of synthetic biology, Chem. Biodivers., 4, 603-621 (2007)
[26] Luisi, P. L.; Ferri, F.; Stano, P., Approaches to semi-synthetic minimal cells: a review, Naturwissenschaften, 93, 1-13 (2006)
[27] Mansy, S. S.; Szostak, J. W., Reconstructing the emergence of cellular life through the synthesis of model protocells, Cold Spring Harb. Symp. Quant. Biol., 74, 1-8 (2009)
[28] MathWorks, MATLAB. Version 7.0.4 (2005), MathWorks, Inc.: MathWorks, Inc. Natick, MA, Available via 〈http://www.mathworks.com〉
[29] Maynard Smith, J.; Szathmáry, E., The Major Transitions in Evolution (1995), Freeman & Co: Freeman & Co Oxford
[30] Mills, D. R.; Peterson, R. L.; Spiegelman, S., An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule, Proc. Natl. Acad. Sci. USA, 58, 217-224 (1967)
[31] Moran, P. A.P., Random processes in genetics, Proc. Cambridge Philos. Soc, 54, 60-71 (1958) · Zbl 0091.15701
[32] Niesert, U., How many genes to start with? A computer simulation about the origin of life, Origins Life, 17, 155-169 (1987)
[33] Niesert, U.; Harnasch, D.; Bresch, C., Origin of life: between scylla and charybdis, J. Mol. Evol., 17, 348-353 (1981)
[34] Oberholzer, T.; Wick, R.; Luisi, P. L.; Biebricher, C. K., Enzymatic RNA replication in self-reproducing vesicles: an approach to a minimal cell, Biochem. Biophys. Res. Commun., 207, 250-257 (1995)
[35] Pohorille, A.; Deamer, D., Artificial cells: prospects for biotechnology, Trends Biotechnol., 20, 123-128 (2002)
[36] (Rasmussen, S.; Bedau, M. A.; Chen, L.; Deamer, D.; Krakauer, D. C.; Packard, N. H.; Stadler, P. F., Protocells. Bridging Nonliving and Living Matter (2009), The MIT Press: The MIT Press Cambridge, MA)
[37] Reader, J. S.; Joyce, G. F., A ribozyme composed of only two different nucleotides, Nature, 420, 841-844 (2002)
[38] Santos, M.; Zintzaras, E.; Szathmáry, E., Recombination in primeval genomes: a step forward but still a long leap from maintaining a sizeable genome, J. Mol. Evol., 59, 507-519 (2004)
[39] Schaffner, W.; Ruegg, K. J.; Weissmann, C., Nanovariant RNAs: nucleotide sequence and interaction with bacteriophage Q \(β\) replicase, J. Mol. Biol., 117, 877-907 (1977)
[40] Scheuring, I., Avoiding catch-22 of early evolution by stepwise increase in copying fidelity, Selection, 1, 135-145 (2000)
[41] Silvestre, D. A.; Fontanari, J. F., Package models and the information crisis of prebiotic evolution, J. Theor. Biol., 252, 326-337 (2008) · Zbl 1398.92184
[42] Spiegelman, S., An approach to the experimental analysis of precellular evolution, Q. Rev. Biophys., 4, 213-253 (1971)
[43] Stadler, B. M.R.; Stadler, P. F., Molecular replicator dynamics, Adv. Comp. Syst., 6, 47-77 (2003) · Zbl 1040.92010
[44] Szabó, P.; Scheuring, I.; Czárán, T.; Szathmáry, E., In silico simulations reveal that replicators with limited dispersal evolve towards higher efficiency and fidelity, Nature, 420, 340-343 (2002)
[45] Szathmáry, E., What determines the size of the genetic alphabet?, Proc. Natl. Acad. Sci. USA, 89, 2614-2618 (1992)
[46] Szathmáry, E.; Demeter, L., Group selection of early replicators and the origin of life, J. Theor. Biol., 128, 463-486 (1987)
[47] Szathmáry, E.; Gladkih, I., Sub-exponential growth and coexistence of non-enzymatically replicating templates, J. Theor. Biol., 138, 55-58 (1989)
[48] Szathmáry, E.; Maynard Smith, J., From replicators to reproducers: the first major transitions leading to life, J. Theor. Biol., 187, 555-571 (1997)
[49] Szathmáry, E.; Santos, M.; Fernando, C., Evolutionary potential and requirements for minimal protocells, Top. Curr. Chem., 259, 167-211 (2005)
[50] Szostak, J. W.; Bartel, D. P.; Luisi, P. L., Synthesizing life, Nature, 409, 387-390 (2001)
[51] Takeuchi, N.; Hogeweg, P., The role of complex formation and deleterious mutations for the stability of RNA-like replicator systems, J. Mol. Evol., 65, 668-686 (2007)
[52] Takeuchi, N.; Hogeweg, P., Multilevel selection in models of prebiotic evolution II: a direct comparison of compartmentalization and spatial self-organization, PLoS Comput. Biol., 5, 10, e1000542 (2009)
[53] Traulsen, A.; Sengupta, A. M.; Nowak, M. A., Stochastic evolutionary dynamics on two levels, J. Theor. Biol., 235, 393-401 (2005) · Zbl 1445.92211
[54] von Kiedrowski, G., A self-replicating hexadeoxynucleotide, Angew. Chem. Int. Ed. Engl., 25, 932-934 (1986)
[55] von Kiedrowski, G., Minimal replicator theory i: parabolic versus exponential growth, Bioorg. Chem. Front., 3, 113-146 (1993)
[56] Whitesides, G. M., The origins and the future of microfluidics, Nature, 442, 368-373 (2006)
[57] Zintzaras, E.; Santos, M.; Szathmáry, E., ‘Living’ under the challenge of information decay: the stochastic corrector model vs. hypercycles, J. Theor. Biol., 217, 167-181 (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.