×

A mathematical model for photoreceptor interactions. (English) Zbl 1414.92080

Summary: The interactions between rods and cones in the retina have been the focus of innumerable experimental and theoretical biological studies in previous decades yet the understanding of these interactions is still incomplete primarily due to the lack of a unified concept of cone photoreceptor organization and its role in retinal diseases. The low abundance of cones in many of the non-primate mammalian models that have been studied make conclusions about the human retina difficult. A more complete knowledge of the human retina is crucial for counteracting the events that lead to certain degenerative diseases, in particular those associated with photoreceptor cell death (e.g., retinitis pigmentosa). In an attempt to gain important insight into the role and interactions of the rods and the cones we develop and analyze a set of mathematical equations that model a system of photoreceptors and incorporate a direct rod-cone interaction. Our results show that the system can exhibit stable oscillations, which correspond to the rhythmic renewal and shedding of the photoreceptors. In addition, our results show the mathematical necessity of this rod-cone direct interaction for survival of both and gives insight into this mechanism.

MSC:

92C20 Neural biology
92B25 Biological rhythms and synchronization
Full Text: DOI

References:

[1] Anderson, D. H.; Fisher, S. K., Disc shedding in rodlike and conelike photoreceptors of tree squirrels, Science, 187, 953-955 (1975)
[2] Anderson, D. H.; Fisher, S. K.; Erickson, P. A.; Tabor, G. A., Rod and cone disc shedding in the rhesus monkey retina: a quantitative study, Experimental Eye Research, 30, 559-574 (1980)
[3] Barraco, R.; Bellomonte, L.; Brai, M.; Anastasi, M., Analysis of the human a-wave erg component, Physiological Measurement, 27, 881-899 (2006)
[4] Bazykin, A. D., Nonlinear Dynamics of Interacting Populations (1998), World Scientific
[5] Bobu, C.; Hicks, D., Regulation of retinal photoreceptor phagocytosis in a diurnal mammal by circadian clocks and ambient lighting, Investigative Ophthalmology and Visual Science, 50, 3495-3502 (2009)
[6] Bok, D., Retinal photoreceptor-pigment epithelium interactions: Friedenwald lecture. Investigative Ophthalmology and Visual Science, December 1985.; Bok, D., Retinal photoreceptor-pigment epithelium interactions: Friedenwald lecture. Investigative Ophthalmology and Visual Science, December 1985.
[7] Bowne, S. J.; Sullivan, L. S.; Gire, A. I.; Birch, D. G.; Hughbanks-Wheaton, D.; Heckenlively, J. R.; Daiger, S. P., Mutations in the topors gene cause 1
[8] Brauer, F.; Castillo-Chavez, C., Mathematical Models in Population Biology and Epidemiology (2001), Springer · Zbl 0967.92015
[9] Camacho, E.; Rand, R.; Howland, H., Dynamics of two van der pol oscillators coupled via a bath, International Journal of Solids and Structures, 41, 2133-2143 (2004) · Zbl 1052.70013
[10] Camacho, E.T., 2003. Mathematical models of retinal dynamics. Ph.D. Dissertation, Cornell University, Center for Applied Mathematics.; Camacho, E.T., 2003. Mathematical models of retinal dynamics. Ph.D. Dissertation, Cornell University, Center for Applied Mathematics.
[11] Chaitin, M. H.; Schneider, B. G.; Hall, M. O.; Papermaster, D. S., Actin in the photoreceptor connecting cilium: immunocytochemical localization to the site of outer segment disk formation, The Journal of Cell Biology, 99, 239-247 (1984)
[12] Chalmel, F.; Léveillard, T.; Jaillard, C.; Lardenois, A.; Berdugo, N.; Morel, E.; Koehl, P.; Lambrou, G.; Holmgren, A.; Sahel, J. A.; Poch, O., Rod-derived cone viability factor-2 is a novel bifunctional-thioredoxin-like protein with therapeutic potential, BMC Molecular Biology, 8, 74 (2007)
[13] Colón Vélez, M.A., Hernández, D.J., Rodríguez Bernier, U., Van Laarhoven, J., Camacho. E.T., 2003. A mathematical model of photoreceptor interactions. Department of Biological Statistics and Computational Biology Technical Report BU-1640-M, Cornell University, pp. 25-69.; Colón Vélez, M.A., Hernández, D.J., Rodríguez Bernier, U., Van Laarhoven, J., Camacho. E.T., 2003. A mathematical model of photoreceptor interactions. Department of Biological Statistics and Computational Biology Technical Report BU-1640-M, Cornell University, pp. 25-69. · Zbl 1414.92080
[14] Edelstein-Keshet, L., Mathematical Models in Biology (1988), McGraw-Hill · Zbl 0674.92001
[15] Ellner, S. P.; Guckenheimer, J., Dynamic Models in Biology (2006), Princeton University Press · Zbl 1148.92001
[16] Fain, G. L.; Lisman, J. E., Photoreceptor degeneration in vitamin a deprivation and retinitis pigmentosa: the equivalent light hypothesis, Experimental Eye Research, 57, 335-340 (1993)
[17] Fisher, S. K.; Pfeffer, B. A.; Anderson, D. H., Both rod and cone disc shedding are related to light onset in the cat, Investigative Ophthalmology and Visual Science, 24, 844-856 (1983)
[18] Guérin, C. J.; Lewis, G. P.; Fisher, S. K.; Anderson, D. H., Recovery of photoreceptor outer segment length and analysis of membrane assembly rates in regenerating primate photoreceptor outer segments, Investigative Ophthalmology and Visual Science, 34, 175-183 (1993)
[19] Hamel, C., Retinitis pigmentosa, Orphanet Journal of Rare Diseases, 1 (2006)
[20] Hanein, S.; Perrault, I.; Gerber, S.; Dollfus, H.; Dufier, J.-L.; Feingold, J.; Munnich, A.; Bhattacharya, S.; Kaplan, J.; Sahel, J.-A.; Rozet, J.-M.; Leveillard, T., Disease-associated variants of the rod-derived cone viability factor (RdCVF) in Leber congenital amaurosis. In: Retinal Degenerative Diseases (2006), Springer, pp. 9-14
[21] Hartong, D. T.; Berson, E. L.; Dryja, T. P., Retinitis pigmentosa, Lancet, 368, 1795-1809 (2006)
[22] Hendrickson, A.; Bumsted-O’Brien, K.; Natoli, R.; Ramamurthy, V.; Possing, D.; Provis, J., Rod photoreceptor differentiation in fetal and infant human retina, Experimental Eye Research, 87, 415-426 (2008)
[23] Hogan, M.; Wood, I.; Steinberg, R., Phagocytosis by pigment epithelium of human retinal cones, Nature, 252, 305-307 (1974)
[24] Huang, P. C.; Gaitan, A. E.; Hao, Y.; Petters, R. M.; Wong, F., Cellular interactions implicated in the mechanism of photoreceptor degeneration in transgenic mice expressing a mutant rhodopsin gene, Proceedings of the National Academy of Sciences of the United States of America, 90, 8484-8488 (1993)
[25] Jonnal, R. S.; Besecker, J. R.; Derby, J. C.; Kocaoglu, O. P.; Cense, B.; Gao, W.; Wang, Q.; Miller, D. T., Imaging outer segment renewal in living human cone photoreceptors, Optics Express, 18, 5257-5270 (2010)
[26] Kevany, B. M.; Palczewski, K., Phagocytosis of retinal rod and cone photoreceptors, Physiology (Bethesda), 25, 8-15 (2010)
[27] Kolb, H., Fernandez, E., Nelson, R., 2008. Webvision: Organization of the Retina and Visual System. University of Utah \(\langle\) http://www.webvision.med.utah.edu/\( \rangle \).; Kolb, H., Fernandez, E., Nelson, R., 2008. Webvision: Organization of the Retina and Visual System. University of Utah \(\langle\) http://www.webvision.med.utah.edu/\( \rangle \).
[28] Kuznetsov, Y. A., Elements of Applied Bifurcation Theory (1995), Springer-Verlag · Zbl 0829.58029
[29] LaVail, M. M., Kinetics of rod outer segment renewal in the developing mouse retina, Journal of Cell Biology, 58, 650-661 (1973)
[30] LaVail, M. M., Rod outer segment disk shedding in rat retina: relationship to cyclic lighting, Science, 194, 1071-1074 (1976)
[31] LaVail, M. M., Circadian nature of rod outer segment disc shedding in the rat, Investigative Ophthalmology and Visual Science, 19, 407-411 (1980)
[32] Léveillard, T.; Sahel, J.-A., Rod-derived cone viability factor for treating blinding diseases: from clinic to redox signaling, Degenerative Retinal Disorders, 2, 1-13 (2010)
[33] Léveillard, T.; Mohand-Saïd, S.; Lorentz, O.; Hicks, D.; Fintz, A.-C.; Clérin, E.; Simonutti, M.; Forster, V.; Cavusoglu, N.; Chalmel, F.; Dollé, P.; Poch, O.; Lambrou, G.; Sahel, J. A., Identification and characterization of rod-derived cone viability factor, Nature Genetics, 36, 7 (2004)
[34] Malanson, K. M.; Lem, J., Rhodopsin-mediated retinitis pigmentosa. In: Progress in Molecular Biology and Translational Science (2009), Elsevier, pp. 1-31
[35] Mohand-Said, S.; Hicks, D.; Léveillard, T.; Picaud, S.; Porto, F.; Sahel, J. A., Rod-cone interactions: developmental and clinical significance, Progress in Retinal and Eye Research, 20, 4, 451-467 (2001)
[36] Mustafi, D.; Engel, K.; Palczewski, A. H., Structure of cone photoreceptors, Progress in Retinal and Eye Research, 28, 289-302 (2009)
[37] Neidhardt, J.; Glaus, E.; Lorenz, B.; Netzer, C.; Li, Y.; Schambeck, M.; Wittmer, M.; Feil, S.; Kirschner-Schwabe, R.; Rosenberg, T.; Cremers, F. P.; Bergen, A. A.; Barthelmes, D.; Baraki, H.; Schmid, F.; Tanner, G.; Fleischhauer, J.; Orth, U.; Becker, C.; Wegscheider, E.; Nrnberg, P.; Nürnberg, G.; Bolz, H. J.; Gal, A.; Berger, W., Identification of novel mutations in x-linked retinitis pigmentosa families and implications for diagnostic testing, Molecular Vision, 14, 1081-1093 (2008)
[38] O’Day, W.; Young, R., Rhythmic daily shedding of outer-segment membranes by visual cells in the goldfish, The Journal of Cell Biology, 76, 593-604 (1978)
[39] Oyster, C. W., The Human Eye: Structure and Function (1999), Sinauer Associates Inc
[40] Pallikaris, A.; Williams, D. R.; Hofer, H., The reflectance of single cones in the living human eye, Investigative Ophthalmology and Visual Science, 44, 10 (2003)
[41] Papermaster, D. S., The birth and death of photoreceptors: the Friedenwald lecture, Investigative Ophthalmology and Visual Science, 43, 5 (2002)
[42] Perko, L., Differential Equations and Dynamical Systems (1996), Springer-Verlag · Zbl 0854.34001
[43] Phelan, J. K.; Bok, D., A brief review of retinitis pigmentosa and the identified retinitis pigmentosa genes, Molecular Vision, 6, 116-124 (2000)
[44] Ripps, H., Cell death in retinitis pigmentosa: gap junctions and the ‘bystander’ effect, Experimental Eye Research, 74, 327-336 (2002)
[45] Sahel, J.-A., Saving cone cells in hereditary rod diseases: a possible role for rod-derived cone viability factor (RdCVF) therapy, Retina, The Journal of Retinal and Citreous Diseases, 25, 8, S38-39 (2005)
[46] Shastry, B. S., Evaluation of the common variants of the abca4 gene in families with Stargardt disease and autosomal recessive retinitis pigmentosa, International Journal of Molecular Medicine, 21, 715-720 (2008)
[47] Shen, J.; Yang, X.; Dong, A.; Petters, R. M.; Peng, Y.-W.; Wong, F.; Campochiaro, P. A., Oxidative damage is a potential cause of cone cell death in retinitis pigmentosa, Journal of Cellular Physiology, 203, 457-464 (2005)
[48] Sherwood, L., Human Physiology: From Cells to Systems (2001), Brooks and Cole Publishers
[49] Shintani, K.; Shechtman, D. L.; Gurwood, A. S., Review and update: current treatment trends for patients with retinitis pigmentosa, Optometry, 80, 384-401 (2009)
[50] Siegert, S.; Groner, A. C.; Cabuy, E.; Forster, V.; Seeliger, M.; Biel, M.; Humphries, P.; Paques, M.; Mohand-Said, S.; Trono, D.; Deisseroth, K.; Sahel, J. A.; Picaud, S.; Roska, B., Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa, Science, 329, 413-417 (2010)
[51] Steinberg, R. H.; Fisher, S. K.; Anderson, D. H., Disk morphogenesis in vertebrate photoreceptors, The Journal of Comparative Neurology, 190, 501-518 (1980)
[52] Tassi, P.; Pellerin, N.; Moessinger, M.; Eschenlauer, R.; Muzet, A., Variation of visual detection over the 24-hour period in humans, Chronobiology International, 17, 795-805 (2000)
[53] Tosini, G.; Fukuhara, C., The mammalian retina as a clock, Cell and Tissue Research, 309, 119-126 (2002)
[54] Weleber, R., Retinitis pigmentosa and allied disorders. In: Retina (1994), Mosby-Year Book, Inc., pp. 334-340
[55] Yang, Y.; Mohand-Said, S.; Danan, A.; Simonutti, M.; Fontaine, V.; Clerin, E.; Picaud, S.; Léveillard, T.; Sahel, J.-A., Functional cone rescue by rdcvf protein in a dominant model of retinitis pigmentosa, Molecular Therapy, 17, 787-795 (2009)
[56] Young, R., The renewal of rod and cone outer segments in the rhesus monkey, The Journal of Cell Biology, 49, 303-318 (1971)
[57] Young, R.W., Bok, D., 1969. Participation of the retinal pigment epithelium in the rod outer segment renewal process. The Journal of Cell Biology 392-403.; Young, R.W., Bok, D., 1969. Participation of the retinal pigment epithelium in the rod outer segment renewal process. The Journal of Cell Biology 392-403.
[58] Young, R. W., The renewal of photoreceptor cell outer segments, The Journal of Cell Biology, 33, 61-72 (1967)
[59] Young, R. W., The difference between rods and cones in the renewal of outer segment protein, Investigative Ophthalmology and Visual Science, 8, 222-231 (1969)
[60] Young, R. W., Visual cells and the concept of renewal, Investigative Ophthalmology and Visual Science, 15, 700-725 (1976)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.