×

Enhancer and competitive allosteric modulation model for G-protein-coupled receptors. (English) Zbl 1414.92138

Summary: A new mathematical model, referred to as enhancer and competitive allosteric modulator (ECAM) model, developed with the aim of quantitatively describing the interaction of an allosteric modulator with both enhancer and competitive properties towards G-protein-coupled receptors is described here. Model simulations for equilibrium (displacement-like and saturation-like), and kinetic (association and dissociation) binding experiments were performed. The results showed the ability of the model to interpret a number of possible ligand-receptor binding behaviors. In particular, the binding properties of PD81723, an enhancer and competitive allosteric modulator for the adenosine A1 receptor, were experimentally evaluated by radioligand binding assays and interpreted by the ECAM model. The results also offer a theoretical background enabling the design and optimization of compounds endowed with allosteric enhancer, competitive, agonist, antagonist, and inverse agonist properties.

MSC:

92C40 Biochemistry, molecular biology
92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)

References:

[1] Bjarnadóttir, T. K.; Gloriam, D. E.; Hellstrand, S. H.; Kristiansson, H.; Fredriksson, R.; Schiöth, H. B., Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse, Genomics, 88, 263-273 (2006)
[2] Bruns, R. F.; Fergus, J. H., Allosteric enhancement of adenosine A1 receptor binding and function by 2-amino-3-benzoylthiophenes, Mol. Pharmacol., 38, 939-949 (1990)
[3] Christopoulos, A.; Kenakin, T., G protein-coupled receptor allosterism and complexing, Pharm. Rev., 54, 323-374 (2002)
[4] Eherlert, F. J., Estimation of the affinities of allosteric ligands using radioligand binding and pharmacological null methods, Mol. Pharmacol., 33, 187-194 (1988)
[5] Fredriksson, R.; Lagerström, M. C.; Lundin, L.-G.; Schiöth, H. B., The G-protein-coupled receptors in the human genome form five main families: phylogenetic analysis, paralogon groups, and fingerprints, Mol. Pharmacol., 63, 1256-1272 (2003)
[6] Goryanin, I.; Hodgman, T. C.; Selkov, E., Mathematical simulation and analysis of cellular metabolism and regulation, Bioinformatics, 15, 749-758 (1999)
[7] Hall, D. A., Modeling the functional effects of allosteric modulators at pharmacological receptors: an extension of the two-state model of receptor activation, Mol. Pharmacol., 58, 1412-1423 (2000)
[8] Hoare, S. R.J.; Strange, P. G., Regulation of D2 dopamine receptors by amiloride and amiloride analogs, Mol. Pharmacol., 50, 1295-1308 (1996)
[9] Hulme, E. C., Receptor Biochemistry, A Practical Approach. (1990), IRL Press/Oxford University Press: IRL Press/Oxford University Press New York
[10] Jaakola, V.-P.; Griffith, M. T.; Hanson, M. A.; Cherezov, V.; Chien, E. Y.T.; Lane, J. R.; IJzerman, A. P.; Stevens, R. C., The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist, Science, 322, 1211-1217 (2008)
[11] Rasmussen, S. G.F.; Choi, H.-J.; Rosenbaum, D. M.; Kobilka, T. S.; Thian, F. S.; Edwards, P. C.; Burghammer, M.; Ratnala, V. R.P.; Sanishvili, R.; Fischetti, R. R.; Schertler, G. F.X.; Weis, W. I.; Kobilka, B. K., Crystal structure of the human beta(2) adrenergic G-protein-coupled receptor, Nature, 450, 383-387 (2007)
[12] Samana, P.; Cotecchia, S.; Costa, T.; Lefkowitz, R. J., A mutation-induced activated state of the \(β_2\)-adrenergic receptor: extending the ternary complex model, J. Biol. Chem., 268, 4625-4636 (1993)
[13] Schiöth, H. B.; Fredriksson, R., The GRAFS classification system of G-protein coupled receptors in comparative perspective, Gen. Comp. Endocrinol., 142, 94-101 (2005)
[14] Tranberg, C. E.; Zickgraf, A.; Giunta, B. N.; Luetjens, H.; Figler, H.; Murphree, L. J.; Falke, R.; Fleischer, H.; Linden, J.; Scammells, P. J.; Olsson, R. A., 2-Amino-3-aroyl-4,5-alkylthiophenes: agonist allosteric enhancers at human A1 adenosine receptors, J. Med. Chem., 45, 382-389 (2002)
[15] Wang, D.; Duan, Y., Ligand entry and exit pathways in the \(β_2\)-adrenergic receptor, J. Mol. Biol., 392, 1102-1115 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.