×

A spatio-temporal model to describe the spread of Salmonella within a laying flock. (English) Zbl 1414.92212

Summary: Salmonella is one of the major sources of toxi-infection in humans, most often because of consumption of poultry products. The main reason for this association is the presence in hen flocks of silent carriers, i.e. animals harboring Salmonella without expressing any visible symptoms. Many prophylactic means have been developed to reduce the prevalence of Salmonella carrier-state. While none allows a total reduction of the risk, synergy could result in a drastic reduction of it. Evaluating the risk by modeling would be very useful to estimate such gain in food safety. Here, we propose an individual-based model which describes the spatio-temporal spread of Salmonella within a laying flock and takes into account the host response to bacterial infection. The model includes the individual bacterial load and the animals’ ability to reduce it thanks to the immune response, i.e. maximum bacterial dose that the animals may resist without long term carriage and, when carriers, length of bacterial clearance. For model validation, we simulated the Salmonella spread under published experimental conditions. There was a good agreement between simulated and observed published data. This model will thus allow studying the effects, on the spatiotemporal distribution of the bacteria, of both mean and variability of different elements of host response.

MSC:

92D30 Epidemiology
35Q92 PDEs in connection with biology, chemistry and other natural sciences
Full Text: DOI

References:

[1] Barrow, P. A., Salmonella infections: immune and non-immune protection with vaccines, Avian Pathol., 36, 1-13 (2007)
[2] Beaumont, C.; Chapuis, H.; Protais, J.; Sellier, N.; Menanteau, P.; Fravalo, P.; Velge, P., Resistance to Salmonella carrier-state: selection may be efficient but response depends on animal’s age, Genet. Res., 91, 161-169 (2009)
[3] Beaumont, C.; Dambrine, G.; Chaussé, A. M.; Flock, D., Selection for disease resistance: conventional breeding for resistance to bacteria and viruses, (Muir, W. M.; Aggrey, S. E., Poultry Genetics, Breeding and Biotechnology (2003), CAB, Publishing: CAB, Publishing Wellingford), 357-384
[4] Bumstead, N.; Barrow, P. A., Genetics of resistance to Salmonella typhimurium in newly hatched chicks, Brit. Poultry Sci., 29, 521-529 (1988)
[5] Butcher, J. C., Numerical Methods for Ordinary Differential Equations (2003), John Wiley & Sons · Zbl 1040.65057
[6] Carrique-Mas, J. J.; Breslin, M.; Snow, L.; Mclaren, I.; Sayers, A. R.; Davies, R. H., Persistence and clearance of different Salmonella serovars in buildings housing laying hens, Epidemiol. Infect., 137, 837-846 (2009)
[7] EFSA, 2009. The community summary report on food-borne outbreaks in the European union in 2007. EFSA J. 271.; EFSA, 2009. The community summary report on food-borne outbreaks in the European union in 2007. EFSA J. 271.
[8] Gast, R. K., Detection of Salmonella enteritidis in experimentally infected laying hens by culturing pools of egg contents, Poultry Sci., 72, 267-274 (1993)
[9] Gast, R. K.; Guard-Bouldin, J.; Holt, P. S., Colonization of reproductive organs and internal contamination of eggs after experimental infection of laying hens with Salmonella heidelberg and Salmonella enteritidis, Avian Dis., 48, 863-869 (2004)
[10] Gast, R. K.; Guard-Bouldin, J.; Holt, P. S., The relationship between the duration of fecal shedding and the production of contaminated eggs by laying hens infected with strains of Salmonella enteritidis and Salmonella heidelberg, Avian Dis., 49, 382-386 (2005)
[11] Gast, R. K.; Guard-Petter, J.; Holt, P. S., Characteristics of Salmonella enteritidis contamination in eggs after oral, aerosol, and intravenous inoculation of laying hens, Avian Dis., 46, 629-635 (2002)
[12] Gast, R. K.; Porter, R. E.; Holt, P. S., Applying tests for specific yolk antibodies to predict contamination by Salmonella enteritidis in eggs from experimentally infected laying hens, Avian Dis., 41, 195-202 (1997)
[13] Grijspeerdt, K.; Kreft, J. U.; Messens, W., Individual-based modelling of growth and migration of Salmonella enteritidis in hens’ eggs, Int. J. Food Microbiol., 100, 323-333 (2005)
[14] Grimm, V.; Berger, U.; Bastiansen, F.; Eliassen, S.; Ginot, V., A standard protocol for describing individual-based and agent-based models, Ecol. Model., 198, 115-126 (2006)
[15] Hill, A. A.; Snary, E. L.; Arnold, M. E.; Alban, L.; Cook, A. J., Dynamics of Salmonella transmission on a British pig grower-finisher farm: a stochastic model, Epidemiol. Infect., 136, 320-333 (2008)
[16] Host, P. S., Host susceptibility, resistance and immunity to Salmonella in animals, (Wray, C.; Wray, A., Salmonella in Domestic Animals (2000), CAB, Publishing: CAB, Publishing New York)
[17] Humphrey, T. J., Public health implications of infection of egg-laying hens with Salmonella enteritidis phage type 4, World’s Poultry Sci. J., 46, 5-13 (1990)
[18] Humphrey, T. J.; Baskerville, A.; Chart, H.; Rowe, B.; Whitehead, A., Salmonella enteritidis PT4 infection in specific pathogen free hens: influence of infecting dose, Vet. Rec., 129, 482-485 (1991)
[19] Humphrey, T. J.; Lanning, D. G., The vertical transmission of Salmonella and formic acid treatment of chiken feed. A possible strategy for control, Epidemiol. Infect., 100, 43-49 (1988)
[20] Huneau-Salaun, A.; Chemaly, M.; Bouquin, S.; Lalande, F.; Petetin, I.; Rouxel, S.; Michel, V.; Fravalo, P.; Rose, N., Risk factors for Salmonella enterica subsp. enterica contamination in 519 French laying hen flocks at the end of the laying period, Prev. Vet. Med., 89, 51-58 (2009)
[21] Ishola, O. O., Effects of challenge dose on faecal shedding of Salmonella enteritidis in experimental infected chickens, Afr. J. Biotechnol., 8, 1343-1346 (2009)
[22] Jiang, J.; Shi, J., Bistability dynamics in some structured ecological models, (Cantrell, S.; Cosner, C.; Ruan, S., Spatial Ecology (2009), CRC Press) · Zbl 1180.92088
[23] Lanzas, C.; Brien, S.; Ivanek, R.; Lo, Y.; Chapagain, P. P.; Ray, K. A.; Ayscue, P.; Warnick, L.; Gröhn, Y. T., The effect of heterogeneous infectious period and contagiousness on the dynamics of Salmonella transmission in dairy cattle, Epidemiol. Infect., 136, 1496-1510 (2008)
[24] Leslie, J., Simulation of the transmission of Salmonella enteritidis phage type 4 in a flock of laying hens, Vet. Rec., 139, 388-391 (1996)
[25] Lever, M. S.; Williams, A., Cross-infection of chicks by airborne transmission of Salmonella enteritidis PT4, Lett. Appl. Microbiol., 23, 347-349 (1996)
[26] Lucquin, B.; Pironneau, O., Introduction au Calcul Scientifique (1996), Masson: Masson Paris · Zbl 0907.65105
[27] Lurette, A.; Belloc, C.; Touzeau, S.; Hoch, T.; Ezanno, P.; Seegers, H.; Fourichon, C., Modelling Salmonella spread within a farrow-to-finish pig herd, Vet. Res., 39, 1-12 (2008)
[28] Nakamura, M.; Nagamine, N.; Takahashi, T.; Suzuki, S.; Kijima, M.; Tamura, Y.; Sato, S., Horizontal transmission of Salmonella enteritidis and effect of stress on shedding in laying hens, Avian Dis., 38, 282-288 (1994)
[29] Prévost, K.; Magal, P.; Beaumont, C., A model of Salmonella infection within industrial house hens, J. Theor. Biol., 242, 755-763 (2006) · Zbl 1447.92471
[30] Prévost, K.; Magal, P.; Protais, J.; Beaumont, C., Effect of genetic resistance of hen to Salmonella carrier-state on incidence of bacterial contamination: synergy with vaccination, Vet. Res., 38, 1-20 (2008)
[31] Rantala, M.; Nurmi, E., Prevention of the growth of Salmonella infantis in chicks by the flora of the alimentary tract of chickens, Brit. Poultry Sci., 14, 627-630 (1973)
[32] Thomas, M. E.; Klinkenberg, D.; Ejeta, G.; Van Knapen, F.; Bergwerff, A. A.; Stegeman, J. A.; Bouma, A., Quantification of horizontal transmission of Salmonella enterica serovar enteritidis bacteria in pair-housed groups of laying hens, Appl. Environ. Microb., 75, 6361-6366 (2009)
[33] Wang, M.; Kot, M., Speeds of invasion in a model with strong or weak allee effects, Math. Biosci., 171, 83-97 (2001) · Zbl 0978.92033
[34] Xiao, Y.; Bowers, R. G.; Clancy, D.; French, N. P., Understanding the dynamics of Salmonella infections in dairy herds: a modelling approach, J. Theor. Biol., 233, 159-175 (2005) · Zbl 1442.92185
[35] Xiao, Y.; Bowers, R. G.; Clancy, D.; French, N. P., Dynamics of infection with multiple transmission mechanisms in unmanaged/managed animal populations, Theor. Popul. Biol., 71, 408-423 (2007) · Zbl 1122.92060
[36] Xiao, Y.; Clancy, D.; French, N. P.; Bowers, R. G., A semi-stochastic model for Salmonella infection in a multi-group herd, Math. Biosci., 200, 214-233 (2006) · Zbl 1089.92053
[37] Zhang-Barber, L.; Turner, A. K.; Barrow, P. A., Vaccination for control of Salmonella in poultry, Vaccine, 17, 2538-2545 (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.