×

A folding “framework structure” of Tetrahymena group I intron. (English) Zbl 1414.92205

Summary: We have published the dynamic extended folding (DEF) method, which is a RNA secondary structure prediction approach – to simulate the in vivo RNA co-transcriptional folding process. In order to verify the reliability of the method, we selected the X-ray-determined Tetrahymena group I intron as a sample to construct the framework of its folding secondary structure. Our prediction coincides well with the secondary structure predicted by T. R. Cech and the X-ray diffraction crystal structure determined by Lehnert V. Our results show that the DEF framework structure of Tetrahymena group I intron reflects its function sites in a concise and straightforward manner, and the scope of the simulation was expanded.

MSC:

92D20 Protein sequences, DNA sequences
Full Text: DOI

References:

[1] Adams, P. L.; Stahley, M. R.; Gil, M. L.; Kosek, A. B.; Wang, J. M.; Strobel, S. A., Crystal structure of a group I intron splicing intermediate, RNA, 10, 1867-1887 (2004)
[2] Cao, H.; Xie, H. Z.; Zhang, W.; Wang, K.; Li, W.; Liu, C. Q., Dynamic extended folding: modeling the RNA secondary structures during co-transcriptional folding, Journal of Theoretical Biology, 261, 93-99 (2009) · Zbl 1403.92199
[3] Cate, J. H.; Gooding, A. R.; Podell, E.; Zhou, K.; Gloden, B. L.; Kundrot, C. E.; Cech, T. R.; Doudna, J. A., Crystal structure of a group I ribozyme domain: principles of RNA packing, Science, 273, 1678-1685 (1996)
[4] Cech, T. R., Conserved sequences and structures of group I introns: building an active site for RNA catalysis—a review, Gene, 73, 259-271 (1988)
[5] Cech, T. R., Self-splicing of group I introns, Annual Review of Biochemistry, 59, 543-568 (1990)
[6] Cech, T. R.; Damberger, H. D.; Gutell, R. R., Representation of the secondary and tertiary structure of group I introns, Nature Structural Biology, 1, 273-280 (1994)
[7] Cech, T. R.; Tanner, N. K.; Tinoco, I.; Weir, B. R.; Zuker, M.; Perlman, P. S., Secondary structure of the Tetrahymena ribosomal RNA intervening sequence: structural homology with fungal mitochondrial intervening sequences, Proceedings of the National Academy of Sciences, 80, 3903-3907 (1983)
[8] Downs, W. D.; Cech, T. R., A tertiary interaction in the Teterahymena intron contributes to selection of the 5′-splice site, Genes Development, 8, 1198-1211 (1994)
[9] Golden, B. L.; Gooding, A. R.; Podell, E. R.; Cech, T. R., A preorganized active site in the crystal structure of the Teterahymena ribozyme, Science, 282, 259-264 (1998)
[10] Golden, B. L.; Kim, H.; Chase, E., Crystal structure of a phage Twort group I ribozyme-product complex, Nature Structural and Molecular Biology, 12, 82-89 (2005)
[11] Grosshans, C. A.; Cech, T. R., Metal ion requirements for sequence specific endoribonuclease activity of the Tetrahymena ribozyme, Biochemistry, 28, 6888-6894 (1989)
[12] Guo, F.; Gooding, A. R.; Cech, T. R., Structure of the Tetrahymena ribozyme: base triple sandwich and metal ion at the active site, Molecular Cell, 16, 351-362 (2004)
[13] Kim, P. S.; Baldwin, R. L., Specific intermediates in the folding reactions of small proteins and the mechanism of protein folding, Annual Review of Biochemistry, 51, 459-489 (1982)
[14] Kim, S. H.; Cech, T. R., Three-dimensional model of the active site of the self-splicing rRNA percursor of Tetrahymena, Proceedings of the National Academy of Sciences, 84, 8788-8792 (1987)
[15] Kitamura, A.; Mutok, Y.; Watanabe, S.; Kim, I.; Ito, T.; Nishiya, Y.; Sakamoto, K.; Ohtsuki, T.; Kawai, G.; Watanabe, K., Solution structure of an RNA fragment with the P7/9.0 region and the 3′-terminal guanosine of the Teterahymena group I intron, RNA, 8, 440-451 (2002)
[16] Knitt, D. S.; Narlikar, G. J.; Herschlag, D., Dissection of the role of the conserved G.U pair in group I RNA self-splicing, Biochemistry, 33, 13864-13879 (1994)
[17] Kruger, K.; Grabowski, P. J.; Zaug, A. J.; Sands, J.; Gottschling, D. E.; Cech, T. R., Self-splicing RNA: auto-excision and auto-cyclization of the ribosomal RNA intercening sequence of Teterahymena, Cell, 31, 147-157 (1982)
[18] Lee, J. C.; Gutell, R. R., Diversity of base-pair conformations and their occurrence in rRNA structure and RNA structural motifs, Journal of Molecular Biology, 344, 1225-1249 (2004)
[19] Lehnert, V.; Jaeger, L.; Michel, F.; Westhof, E., New loop-loop tertiary interactions in self-splicing introns of subgroup IC and ID: a complete 3 D model of the Tetrahymena thermophila ribozyme, Chemistry and Biology, 3, 993-1009 (1996)
[20] Lescoute, A.; Westhof, E., Topology of three-way junctions in folded RNAs, RNA, 12, 83-93 (2006)
[21] Liang, C. R.; Liu, C. Q., Additional angles to calculate the deformation of RNA helices induced by bulge loops, Journal of Molecular Structure, 617, 63-67 (2002)
[22] Luo, L. F.; Li, X. Q., Recognition and architecture of the framework structure of protein, PROTEINS: Structure, Function, and Genetics, 39, 9-25 (2000)
[23] Luty, B. A.; Wasserman, Z. R.; Stouten, P. F.W.; Hodge, C. N.; Zacharias, M.; Mccammon, J. A., A molecular mechanics/grid method for evaluation of ligand-receptor interactions, Journal of Computational Chemistry, 16, 454-464 (1995)
[24] Michel, F.; Duion, B., Conservation of RNA secondary structures in two intron families including mitochondrial-, chloroplast- and nuclear-encoded members, EMBO Journal, 2, 33-38 (1983)
[25] Michel, F.; Westhof, E., Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis, Journal of Molecular Biology, 216, 585-610 (1990)
[26] Michel, F.; Hanna, M.; Green, R.; Bartel, D. P.; Szostak, J. W., The guanosine binding site of the Teterahymena ribozyme, Nature, 342, 359-391 (1989)
[27] Partons, S.; Lewin, A. S., Splicing of COB intron 5 requires pairing between the internal guide sequence and both flanking exons, Proceedings of the National Academy of Sciences, 87, 8192-8196 (1990)
[28] Piccirilli, J. A.; Vyle, J. S.; Caruthers, M. H.; Cech, T. R., Metal ion catalysis in the Tetrahymena ribozyme reaction, Nature, 361, 85-88 (1993)
[29] Pyle, A. M.; Cech, T. R., Ribozyme recognition of RNA by tertiary interactions with specific ribose 2′-OH groups, Nature, 350, 628-631 (1991)
[30] Schneider, B.; Moravek, Z.; Berman, H. M., RNA conformational classes, Nucleic Acids Research, 32, 1666-1677 (2004)
[31] Suh, E. R.; Waring, R. B., Base pairing between the 3′-exon and an internal guide sequence increase 3′-splice site specificity in the Teterahymena self-splicing ribosomal RNA intron, Molecular and Cellular Biology, 10, 2960-2965 (1990)
[32] Waring, R. B.; Scazzocchio, C.; Brown, T. A.; Davies, R. W., Close relationship between certain nuclear and mitochondrial intron, Journal of Molecular Biology, 236, 64-71 (1983)
[33] Ye, J. D.; Tereshko, V.; Frederiksen, J. K.; Koide, A.; Fellouse, F. A.; Sidhu, S. S.; Koide, S.; Kossiakoff, A. A.; Piccirilli, J. A., Synthetic antibodies for specific recognition and crystallization of structured RNA, Proceedings of the National Academy of Sciences, 105, 82-87 (2008)
[34] Zhang, H.; Liu, C. Q., RNAStudio, a full-featured object-oriented program for visualizing RNA secondary structures, Journal of Molecular Graphics and Modeling, 21, 1-2 (2002)
[35] Zhang, K. L.; Luo, J. C.; Liu, C. Q., Exploring consensus mRNA secondary (folding) structure units by stochastic sampling and folding simulation, Journal of Molecular Structure (THEOCHEM), 715, 15-20 (2005)
[36] Zhang, H.; Liu, C. Q., RNAStudio, a full-featured object-oriented program for visualizing RNA secondary structures, Journal of Molecular Graphics and Modeling, 21, 1-2 (2002)
[37] Zhou, W.; Chen, X. F.; Zhang, K. L.; Liu, C. Q., The identification and quantification of highly stable ‘common hairpin’ in the dynamic process of co-transcriptional mRNA folding, Journal of Molecular Structure: THEOCHEM, 722, 41-50 (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.