×

Physiological modeling of isoprene dynamics in exhaled breath. (English) Zbl 1414.92136

Summary: Human breath contains a myriad of endogenous volatile organic compounds (VOCs) which are reflective of ongoing metabolic or physiological processes. While research into the diagnostic potential and general medical relevance of these trace gases is conducted on a considerable scale, little focus has been given so far to a sound analysis of the quantitative relationships between breath levels and the underlying systemic concentrations. This paper is devoted to a thorough modeling study of the end-tidal breath dynamics associated with isoprene, which serves as a paradigmatic example for the class of low-soluble, blood-borne VOCs.
Real-time measurements of exhaled breath under an ergometer challenge reveal characteristic changes of isoprene output in response to variations in ventilation and perfusion. Here, a valid compartmental description of these profiles is developed. By comparison with experimental data it is inferred that the major part of breath isoprene variability during exercise conditions can be attributed to an increased fractional perfusion of potential storage and production sites, leading to higher levels of mixed venous blood concentrations at the onset of physical activity. In this context, various lines of supportive evidence for an extrahepatic tissue source of isoprene are presented.
Our model is a first step towards new guidelines for the breath gas analysis of isoprene and is expected to aid further investigations regarding the exhalation, storage, transport and biotransformation processes associated with this important compound.

MSC:

92C40 Biochemistry, molecular biology
92C30 Physiology (general)

References:

[1] Amann, A.; Poupart, G.; Telser, S.; Ledochowski, M.; Schmid, A.; Mechtcheriakov, S., Applications of breath gas analysis in medicine, Int. J. Mass Spectrom., 239, 227-233 (2004)
[2] Amann, A., Smith, D. (Eds.), 2005. Breath Analysis for Clinical Diagnosis and Therapeutic Monitoring. World Scientific, Singapore.; Amann, A., Smith, D. (Eds.), 2005. Breath Analysis for Clinical Diagnosis and Therapeutic Monitoring. World Scientific, Singapore.
[3] Amann, A.; Spanel, P.; Smith, D., Breath analysis: the approach towards clinical applications, Mini Rev. Med. Chem., 7, 115-129 (2007)
[4] Amann, A.; Telser, S.; Hofer, L.; Schmid, A.; Hinterhuber, H., Breath gas as a biochemical probe in sleeping individuals, (Amann, A.; Smith, D., Breath Analysis for Clinical Diagnosis and Therapeutic Monitoring (2005), World Scientific: World Scientific Singapore), 305-316
[5] Anderson, J. C.; Babb, A. L.; Hlastala, M. P., Modeling soluble gas exchange in the airways and alveoli, Ann. Biomed. Eng., 31, 1402-1422 (2003)
[6] Anderson, J. C.; Hlastala, M. P., Breath tests and airway gas exchange, Pulm. Pharmacol. Ther., 20, 112-117 (2007)
[7] Banks, H. T.; Fitzpatrick, B. G., Statistical methods for model comparison in parameter estimation problems for distributed systems, J. Math. Biol., 28, 501-527 (1990) · Zbl 0732.62061
[8] Banks, H.T., Holm, K., Robbins, D., in press. Standard error computations for uncertainty quantification in inverse problems: asymptotic theory vs. bootstrapping. Math. Comput. Modelling 52, 1610-1625; Banks, H.T., Holm, K., Robbins, D., in press. Standard error computations for uncertainty quantification in inverse problems: asymptotic theory vs. bootstrapping. Math. Comput. Modelling 52, 1610-1625 · Zbl 1205.93170
[9] Banks, H. T.; Tran, H. T., Mathematical and Experimental Modeling of Physical and Biological Processes (2009), CRC Press: CRC Press Boca Raton · Zbl 1402.00037
[10] Batzel, J. J.; Kappel, F.; Schneditz, D.; Tran, H. T., Cardiovascular and Respiratory Systems: Modeling, Analysis, and Control (2007), SIAM: SIAM Philadelphia · Zbl 1182.92017
[11] Bock, H. G., Numerical treatment of inverse problems in chemical reaction kinetics, (Ebert, K.; Deuflhard, P.; Jäger, W., Modelling of Chemical Reaction Systems (1981), Springer: Springer Heidelberg), 102-125
[12] Bock, H.G., 1987. Randwertproblemmethoden zur Parameteridentifizierung in Systemen nichtlinearer Differentialgleichungen. Ph.D. Thesis, Universität Bonn.; Bock, H.G., 1987. Randwertproblemmethoden zur Parameteridentifizierung in Systemen nichtlinearer Differentialgleichungen. Ph.D. Thesis, Universität Bonn. · Zbl 0622.65064
[13] Bogaards, J. J.; Freidig, A. P.; van Bladeren, P. J., Prediction of isoprene diepoxide levels in vivo in mouse, rat and man using enzyme kinetic data in vitro and physiologically-based pharmacokinetic modelling, Chem. Biol. Interact., 138, 247-265 (2001)
[14] Box, G.; Jenkins, G. M.; Reinsel, G., Time Series Analysis: Forecasting & Control (1994), Prentice-Hall: Prentice-Hall Englewood Cliffs · Zbl 0858.62072
[15] Brown, M. S.; Goldstein, J. L., Multivalent feedback regulation of HMG CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth, J. Lipid Res., 21, 505-517 (1980)
[16] Brun, R.; Kühni, M.; Siegrist, H.; Gujer, W.; Reichert, P., Practical identifiability of ASM2d parameters-systematic selection and tuning of parameter subsets, Water Res., 36, 4113-4127 (2002)
[17] Buszewski, B.; Kesy, M.; Ligor, T.; Amann, A., Human exhaled air analytics: biomarkers of diseases, Biomed. Chromatogr., 21, 553-566 (2007)
[18] Cailleux, A.; Allain, P., Isoprene and sleep, Life Sci., 44, 1877-1880 (1989)
[19] Cailleux, A.; Cogny, M.; Allain, P., Blood isoprene concentrations in humans and in some animal species, Biochem. Med. Metab. Biol., 47, 157-160 (1992)
[20] Cailleux, A.; Moreau, X.; Delhumeau, A.; Allain, P., Decrease of isoprene concentrations in blood during general anesthesia, Biochem. Med. Metab. Biol., 49, 321-325 (1993)
[21] Capodicasa, E.; Brunori, F.; Medio, G. E.D.; Pelli, M. A.; Vecchi, L.; Buoncristiani, U., Effect of two-hour daily hemodialysis and sham dialysis on breath isoprene exhalation, Int. J. Artif. Organs, 30, 583-588 (2007)
[22] Capodicasa, E.; Trovarelli, G.; Medio, G. E.D.; Pelli, M. A.; Lippi, G.; Verdura, C.; Timio, M., Volatile alkanes and increased concentrations of isoprene in exhaled air during hemodialysis, Nephron, 82, 331-337 (1999)
[23] Cintrón-Arias, A.; Banks, H. T.; Capaldi, A.; Lloyd, A. L., A sensitivity matrix based methodology for inverse problem formulation, J. Inv. Ill-Posed Probl., 17, 545-564 (2009) · Zbl 1179.34008
[24] Cobelli, C.; DiStefano, J. J., Parameter and structural identifiability concepts and ambiguities: a critical review and analysis, Am. J. Physiol., 239, R7-R24 (1980)
[25] Cope, K. A.; Watson, M. T.; Foster, W. M.; Sehnert, S. S.; Risby, T. H., Effects of ventilation on the collection of exhaled breath in humans, J. Appl. Physiol., 96, 1371-1379 (2004)
[26] Csanády, G. A.; Filser, J. G., Toxicokinetics of inhaled and endogenous isoprene in mice, rats, and humans, Chem. Biol. Interact., 135-136, 679-685 (2001)
[27] Davidian, M.; Giltinan, D. M., Nonlinear Models for Repeated Measurement Data (1995), Chapman and Hall: Chapman and Hall New York
[28] Deneris, E. S.; Stein, R. A.; Mead, J. F., In vitro biosynthesis of isoprene from mevalonate utilizing a rat liver cytosolic fraction, Biochem. Biophys. Res. Commun., 123, 691-696 (1984)
[29] Dogan, G., Bootstrapping for confidence interval estimation and hypothesis testing for parameters of system dynamics models, Syst. Dyn. Rev., 23, 415-436 (2007)
[30] Farhi, L. E., Elimination of inert gas by the lung, Respir. Physiol., 3, 1-11 (1967)
[31] Filser, J. G.; Csanády, G. A.; Denk, B.; Hartmann, M.; Kauffmann, A.; Kessler, W.; Kreuzer, P. E.; Pütz, C.; Shen, J. H.; Stei, P., Toxicokinetics of isoprene in rodents and humans, Toxicology, 113, 278-287 (1996)
[32] Fiserova-Bergerova, V. (Ed.), 1983. Modeling of Inhalation Exposure to Vapors: Uptake, Distribution, and Elimination. CRC Press, Boca Raton.; Fiserova-Bergerova, V. (Ed.), 1983. Modeling of Inhalation Exposure to Vapors: Uptake, Distribution, and Elimination. CRC Press, Boca Raton.
[33] Fritz, G., Targeting the mevalonate pathway for improved anticancer therapy, Curr. Cancer Drug Targets, 9, 626-638 (2009)
[34] Gelmont, D.; Stein, R. A.; Mead, J. F., Isoprene—the main hydrocarbon in human breath, Biochem. Biophys. Res. Commun., 99, 1456-1460 (1981)
[35] Gerlowski, L. E.; Jain, R. K., Physiologically based pharmacokinetic modeling: principles and applications, J. Pharm. Sci., 72, 1103-1127 (1983)
[36] Golub, G. H.; Van Loan, C. F., Matrix Computations (1996), Johns Hopkins University Press: Johns Hopkins University Press Baltimore · Zbl 0865.65009
[37] Hairer, E.; P., N. S.; Wanner, G., Solving Ordinary Differential Equations (1): Nonstiff Problems (1993), Springer: Springer Berlin · Zbl 0789.65048
[38] Hartmann, M.; Kessler, W., Pharmacokinetics and endogenous production of isoprene in humans, Naunyn-Schmiedberg’s Arch. Pharmacol., 341, Suppl., R13 (1990)
[39] Hengl, S.; Kreutz, C.; Timmer, J.; Maiwald, T., Data-based identifiability analysis of non-linear dynamical models, Bioinformatics, 23, 2612-2618 (2007)
[40] Huet, S.; Bouvier, A.; Poursat, M.-A.; Jolivet, E., Statistical Tools for Nonlinear Regression (2003), Springer: Springer New York
[41] Hughes, J. M.B.; Morell, N. W., Pulmonary Circulation. From Basic Mechanisms to Clinical Practice (2001), Imperial College Press: Imperial College Press London
[42] Jacquez, J. A.; Perry, T., Parameter estimation: local identifiability of parameters, Am. J. Physiol., 258, E727-E736 (1990)
[43] Johnson, A. T., Biomechanics and Exercise Physiology: Quantitative Modeling (2007), CRC Press: CRC Press Boca Raton
[44] Karl, T.; Prazeller, P.; Mayr, D.; Jordan, A.; Rieder, J.; Fall, R.; Lindinger, W., Human breath isoprene and its relation to blood cholesterol levels: new measurements and modeling, J. Appl. Physiol., 91, 762-770 (2001)
[45] Kharitonov, S. A.; Barnes, P. J., Biomarkers of some pulmonary diseases in exhaled breath, Biomarkers, 7, 1-32 (2002)
[46] King, J., Kupferthaler, A., Unterkofler, K., Koc, H., Teschl, S., Teschl, G., Miekisch, W., Schubert, J., Hinterhuber, H., Amann, A., 2009. Isoprene and acetone concentration profiles during exercise on an ergometer. J. Breath Res. 3, 027006 (16pp.). URL: 〈http://arxiv.org/abs/0907.2943〉.; King, J., Kupferthaler, A., Unterkofler, K., Koc, H., Teschl, S., Teschl, G., Miekisch, W., Schubert, J., Hinterhuber, H., Amann, A., 2009. Isoprene and acetone concentration profiles during exercise on an ergometer. J. Breath Res. 3, 027006 (16pp.). URL: 〈http://arxiv.org/abs/0907.2943〉.
[47] King, J.; Mochalski, P.; Kupferthaler, A.; Unterkofler, K.; Koc, H.; Filipiak, W.; Teschl, S.; Hinterhuber, H.; Amann, A., Dynamic profiles of volatile organic compounds in exhaled breath as determined by a coupled PTR-MS/GC-MS study, Physiol. Meas., 31, 1169-1184 (2010), URL: 〈https://homepages.fhv.at/ku/karl/pdfs/PhysMeas2010.pdf〉
[48] King, J., Unterkofler, K., Teschl, G., Teschl, S., Koc, H., Hinterhuber, H., Amann, A., 2010b. A mathematical model for breath gas analysis of volatile organic compounds with special emphasis on acetone. Preprint, Breath Research Institute, Austrian Academy of Sciences. URL: 〈http://arxiv.org/abs/1003.4475〉.; King, J., Unterkofler, K., Teschl, G., Teschl, S., Koc, H., Hinterhuber, H., Amann, A., 2010b. A mathematical model for breath gas analysis of volatile organic compounds with special emphasis on acetone. Preprint, Breath Research Institute, Austrian Academy of Sciences. URL: 〈http://arxiv.org/abs/1003.4475〉. · Zbl 1311.92104
[49] Kinoyama, M.; Nitta, H.; Watanabe, A.; Ueda, H., Acetone and isoprene concentrations in exhaled breath in healthy subjects, J. Health Sci., 54, 471-477 (2008)
[50] Kuhn, E.; Lavielle, M., Maximum likelihood estimation in nonlinear mixed effects models, Comput. Stat. Data Anal., 49, 1020-1038 (2005) · Zbl 1429.62279
[51] Kumagai, S.; Matsunaga, I., A lung model describing uptake of organic solvents and roles of mucosal blood flow and metabolism in the bronchioles, Inhal. Toxicol., 12, 491-510 (2000)
[52] Kushch, I.; Arendacka, B.; Stolc, S.; Mochalski, P.; Filipiak, W.; Schwarz, K.; Schwentner, L.; Schmid, A.; Dzien, A.; Lechleitner, M.; Witkovsky, V.; Miekisch, W.; Schubert, J.; Unterkofler, K.; Amann, A., Breath isoprene—aspects of normal physiology related to age, gender and cholesterol profile as determined in a proton transfer reaction mass spectrometry study, Clin. Chem. Lab. Med., 46, 1011-1018 (2008)
[53] Leung, H. W., Development and utilization of physiologically based pharmacokinetic models for toxicological applications, J. Toxicol. Environ. Health, 32, 247-267 (1991)
[54] Liang, P. J.; Pandit, J. J.; Robbins, P. A., Statistical properties of breath-to-breath variations in ventilation at constant \(P_{ET, CO_2}\) and \(P_{ET, O_2}\) in humans, J. Appl. Physiol., 81, 2274-2286 (1996)
[55] Ligor, T.; Ligor, M.; Amann, A.; Ager, C.; Bachler, M.; Dzien, A.; Buszewski, B., The analysis of healthy volunteers’ exhaled breath by the use of solid-phase microextraction and GC-MS, J. Breath Res., 2, 046006 (2008)
[56] Lindinger, W.; Hansel, A.; Jordan, A., On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS)—medical applications, food control and environmental research, Int. J. Mass Spectrom., 173, 191-241 (1998)
[57] Lindinger, W.; Hansel, A.; Jordan, A., Proton-transfer-reaction mass spectrometry (PTR-MS): on-line monitoring of volatile organic compounds at pptv levels, Chem. Soc. Rev., 27, 347-354 (1998)
[58] Lirk, P.; Bodrogi, F.; Raifer, H.; Greiner, K.; Ulmer, H.; Rieder, J., Elective haemodialysis increases exhaled isoprene, Nephrol. Dial. Transplant., 18, 937-941 (2003)
[59] Ljung, G. M.; Box, G. E.P., On a measure of lack of fit in time series models, Biometrika, 65, 297-303 (1978) · Zbl 0386.62079
[60] Lumb, A. B., Nunn’s Applied Respiratory Physiology (2005), Butterworth-Heinemann: Butterworth-Heinemann Oxford
[61] McGrath, L. T.; Patrick, R.; Silke, B., Breath isoprene in patients with heart failure, Eur. J. Heart Fail., 3, 423-427 (2001)
[62] Melnick, R. L.; Kohn, M. C., Dose-response analyses of experimental cancer data, Drug Metab. Rev., 32, 193-209 (2000)
[63] Melnick, R. L.; Sills, R. C.; Roycroft, J. H.; Chou, B. J.; Ragan, H. A.; Miller, R. A., Isoprene, an endogenous hydrocarbon and industrial chemical induces, multiple organ neoplasia in rodents after 26 weeks of inhalation exposure, Cancer Res., 54, 5333-5339 (1994)
[64] Miekisch, W.; Schubert, J. K., From highly sophisticated analytical techniques to life-saving diagnostics: technical developments in breath analysis, Trends Anal. Chem., 25, 665-673 (2006)
[65] Miekisch, W.; Schubert, J. K.; Noeldge-Schomburg, G. F.E., Diagnostic potential of breath analysis-focus on volatile organic compounds, Clin. Chim. Acta, 347, 25-39 (2004)
[66] Miekisch, W.; Schubert, J. K.; Vagts, D. A.; Geiger, K., Analysis of volatile disease markers in blood, Clin. Chem., 47, 1053-1060 (2001)
[67] Mohrman, D. E.; Heller, L. J., Cardiovascluar Physiology (2006), Lange Medical Books, McGraw-Hill: Lange Medical Books, McGraw-Hill New York
[68] Monte, M. D.; Citti, L.; Gervasi, P. G., Isoprene metabolism by liver microsomal mono-oxygenases, Xenobiotica, 15, 591-597 (1985)
[69] Mörk, A. K.; Johanson, G., A human physiological model describing acetone kinetics in blood and breath during various levels of physical exercise, Toxicol. Lett., 164, 6-15 (2006)
[70] Mörk, A.-K.; Jonsson, F.; Johanson, G., Bayesian population analysis of a washin-washout physiologically based pharmacokinetic model for acetone, Toxicol. Appl. Pharmacol., 240, 423-432 (2009)
[71] Nelson, N.; Lagesson, V.; Nosratabadi, A. R.; Ludvigsson, J.; Tagesson, C., Exhaled isoprene and acetone in newborn infants and in children with diabetes mellitus, Pediatr. Res., 44, 363-367 (1998)
[72] NTP, 1999. Toxicology and carcinogenesis studies of isoprene (CAS No. 78-79-5) in F344/N rats (inhalation studies). Technical Report NTP-TR-486, NIH Publication No. 97-3976. Technical Report, National Toxicology Program, Research Triangle Park, NC.; NTP, 1999. Toxicology and carcinogenesis studies of isoprene (CAS No. 78-79-5) in F344/N rats (inhalation studies). Technical Report NTP-TR-486, NIH Publication No. 97-3976. Technical Report, National Toxicology Program, Research Triangle Park, NC.
[73] Ottesen, J. T.; Olufsen, M. S.; Larsen, J. K., Applied Mathematical Models in Human Physiology (2004), SIAM: SIAM Philadelphia · Zbl 1097.92016
[74] Pabst, F.; Miekisch, W.; Fuchs, P.; Kischkel, S.; Schubert, J. K., Monitoring of oxidative and metabolic stress during cardiac surgery by means of breath biomarkers: an observational study, J. Cardiothorac. Surg., 2, 37 (2007)
[75] Peifer, M.; Timmer, J., Parameter estimation in ordinary differential equations for biochemical processes using the method of multiple shooting, IET Syst. Biol., 1, 78-88 (2007)
[76] Pleil, J. D., Role of exhaled breath biomarkers in environmental health science, J. Toxicol. Environ. Health B Crit. Rev., 11, 613-629 (2008)
[77] Pleil, J. D.; Kim, D.; Prah, J. D.; Ashley, D. L.; Rappaport, S. M., The unique value of breath biomarkers for estimating pharmacokinetic rate constants and body burden from environmental exposures, (Amann, A.; Smith, D., Breath Analysis for Clinical Diagnosis and Therapeutic Monitoring (2005), World Scientific: World Scientific Singapore), 347-359
[78] Reddy, M.B., Yang, R.S.H., Clewell III, H.J., Andersen, M.E., 2005. Physiologically Based Pharmacokinetic Modeling: Science and Applications. Wiley, Hoboken.; Reddy, M.B., Yang, R.S.H., Clewell III, H.J., Andersen, M.E., 2005. Physiologically Based Pharmacokinetic Modeling: Science and Applications. Wiley, Hoboken.
[79] Rieder, J.; Lirk, P.; Ebenbichler, C.; Gruber, G.; Prazeller, P.; Lindinger, W.; Amann, A., Analysis of volatile organic compounds: possible applications in metabolic disorders and cancer screening, Wien. Klin. Wochenschr., 113, 181-185 (2001)
[80] Rodriguez-Fernandez, M.; Egea, J. A.; Banga, J. R., Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems, BMC Bioinformatics, 7, 483 (2006)
[81] Salerno-Kennedy, R.; Cashman, K. D., Potential applications of breath isoprene as a biomarker in modern medicine: a concise overview, Wien. Klin. Wochenschr., 117, 180-186 (2005)
[82] Schwarz, K.; Filipiak, W.; Amann, A., Determining concentration patterns of volatile compounds in exhaled breath by PTR-MS, J. Breath Res., 3, 027002 (2009), (15pp.)
[83] Seber, G. A.F.; Wild, C. J., Nonlinear Regression (2003), Wiley: Wiley Hoboken · Zbl 0721.62062
[84] Shao, J.; Tu, D., The Jackknife and Bootstrap (1995), Springer: Springer New York · Zbl 0947.62501
[85] Silver, G. M.; Fall, R., Characterization of aspen isoprene synthase, an enzyme responsible for leaf isoprene emission to the atmosphere, J. Biol. Chem., 270, 13010-13016 (1995)
[86] Smith, D.; Spanel, P.; Davies, S., Trace gases in breath of healthy volunteers when fasting and after a protein-calorie meal: a preliminary study, J. Appl. Physiol., 87, 1584-1588 (1999)
[87] Smith, D.; Spanel, P.; Enderby, B.; Lenney, W.; Turner, C.; Davies, S. J., Isoprene levels in the exhaled breath of 200 healthy pupils within the age range 7-18 years studied using SIFT-MS, J. Breath Res., 4, 017101 (2010)
[88] Stone, B. G.; Besse, T. J.; Duane, W. C.; Evans, C. D.; DeMaster, E. G., Effect of regulating cholesterol biosynthesis on breath isoprene excretion in men, Lipids, 28, 705-708 (1993)
[89] Sullivan, M. J.; Knight, J. D.; Higginbotham, M. B.; Cobb, F. R., Relation between central and peripheral hemodynamics during exercise in patients with chronic heart failure. Muscle blood flow is reduced with maintenance of arterial perfusion pressure, Circulation, 80, 769-781 (1989)
[90] Taucher, J.; Hansel, A.; Jordan, A.; Fall, R.; Futrell, J. H.; Lindinger, W., Detection of isoprene in expired air from human subjects using proton-transfer-reaction mass spectrometry, Rapid Commun. Mass Spectrom., 11, 1230-1234 (1997)
[91] Tothill, P.; Stewart, A. D., Estimation of thigh muscle and adipose tissue volume using magnetic resonance imaging and anthropometry, J. Sports Sci., 20, 563-576 (2002)
[92] Turner, C.; Spanel, P.; Smith, D., A longitudinal study of breath isoprene in healthy volunteers using selected ion flow tube mass spectrometry (SIFT-MS), Physiol. Meas., 27, 13-22 (2006)
[93] Wagner, P., Ventilation-perfusion matching during exercise, Chest, 101, 192S-198S (1992)
[94] Wagner, P. D., The multiple inert gas elimination technique (MIGET), Intensive Care Med., 34, 994-1001 (2008)
[95] Watson, W. P.; Cottrell, L.; Zhang, D.; Golding, B. T., Metabolism and molecular toxicology of isoprene, Chem. Biol. Interact., 135-136, 223-238 (2001)
[96] Weitzberg, E.; Lundberg, J. O.N., Humming greatly increases nasal nitric oxide, Am. J. Respir. Crit. Care Med., 166, 144-145 (2002)
[97] West, J. B., Respiratory Physiology the Essentials (2005), Lippincott Williams & Wilkins: Lippincott Williams & Wilkins Baltimore
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.