×

Co-evolution of learning complexity and social foraging strategies. (English) Zbl 1414.92217

Summary: Variation in learning abilities within populations suggests that complex learning may not necessarily be more adaptive than simple learning. Yet, the high cost of complex learning cannot fully explain this variation without some understanding of why complex learning is too costly for some individuals but not for others. Here we propose that different social foraging strategies can favor different learning strategies (that learn the environment with high or low resolution), thereby maintaining variable learning abilities within populations. Using a genetic algorithm in an agent-based evolutionary simulation of a social foraging game (the producer-scrounger game) we demonstrate how an association evolves between a strategy based on independent search for food (playing a producer) and a complex (high resolution) learning rule, while a strategy that combines independent search and following others (playing a scrounger) evolves an association with a simple (low resolution) learning rule. The reason for these associations is that for complex learning to have an advantage, a large number of learning steps, normally not achieved by scroungers, are necessary. These results offer a general explanation for persistent variation in cognitive abilities that is based on co-evolution of learning rules and social foraging strategies.

MSC:

92D50 Animal behavior
91A22 Evolutionary games
91A80 Applications of game theory

References:

[1] Aoki, K.; Wakano, J. Y.; Feldman, M. W., The emergence of social learning in a temporally changing environment: a theoretical model, Curr. Anthropol., 46, 334-340 (2005)
[2] Arbilly, M., Motro, U., Feldman, M.W., Lotem, A., Recombination and the evolution of coordinated phenotypic expression in a frequency-dependent game, under review.; Arbilly, M., Motro, U., Feldman, M.W., Lotem, A., Recombination and the evolution of coordinated phenotypic expression in a frequency-dependent game, under review. · Zbl 1322.91011
[3] Barnard, C. J.; Sibly, R. M., Producers and scroungers—a general model and its application to captive flocks of house sparrows, Anim. Behav., 29, 543-550 (1981)
[4] Bateson, M.; Kacelnik, A., Starlings’ preferences for predictable and unpredictable delays to food, Anim. Behav., 53, 1129-1142 (1997)
[5] Beauchamp, G., Learning rules for social foragers: implications for the producer-scrounger game and ideal free distribution theory, J. Theor. Biol., 207, 21-35 (2000)
[6] Beauchamp, G.; Kacelnik, A., Effects of the knowledge of partners on learning rates in zebra finches Taeniopygia guttata, Anim. Behav., 41, 247-253 (1991)
[7] Bell, A. M., Future directions in behavioural syndromes research, Proc. R. Soc. B, 274, 755-761 (2007)
[8] Ben-Akiva, M.; Lerman, S., Discrete Choice Analysis: Theory and Application to Travel Demand (1985), MIT Press: MIT Press Cambridge
[9] Bereby-Meyer, Y.; Erev, I., On learning to become a successful loser: a comparison of alternative abstractions of learning processes in the loss domain, J. Math. Psychol., 42, 266-286 (1998) · Zbl 0930.91058
[10] Bergman, A.; Feldman, M. W., On the evolution of learning: representation of a stochastic environment, Theor. Popul. Biol., 48, 251-276 (1995) · Zbl 0839.92013
[11] Bernstein, C.; Kacelnik, A.; Krebs, J. R., Individual decisions and the distribution of predators in a patchy environment, J. Anim. Ecol., 57, 1007-1026 (1988)
[12] Borenstein, E.; Feldman, M. W.; Aoki, K., Evolution of learning in fluctuating environments: when selection favors both social and exploratory individual learning, Evolution, 62, 586-602 (2008)
[13] Bouchard, T. J.; Mcgue, M., Familial studies of intelligence—a review, Science, 212, 1055-1059 (1981)
[14] Boyd, R.; Richerson, P. J., Culture and the Evolutionary Process (1985), University of Chicago Press: University of Chicago Press Chicago
[15] Boyd, R.; Richerson, P. J., An evolutionary model of social learning: the effect of spatial and temporal variation, (Zentall, T.; Galef, B. G., Social Learning (1988), Erlbaum: Erlbaum Hillsdale), 29-48
[16] Boyd, R.; Richerson, P. J., Why does culture increase human adaptability?, Ethol. Sociobiol., 16, 125-143 (1995)
[17] Burger, J. M.; Kolss, M.; Pont, J.; Kawecki, T. J., Learning ability and longevity: a symmetrical evolutionary trade-off in Drosophila, Evolution, 62, 1294-1304 (2008)
[18] Busemeyer, J. R.; Myung, I. J., An adaptive approach to human decision making: learning theory, decision theory, and human performance, J. Exp. Psychol. Gen., 121, 177-194 (1992)
[19] Caldwell, C. A.; Whiten, A., Scrounging facilitates social learning in common marmosets, Callithrix jacchus, Anim. Behav., 65, 1085-1092 (2003)
[20] Camerer, C.; Ho, T. H., Experience-weighted attraction learning in normal form games, Econometrica, 67, 827-874 (1999) · Zbl 1055.91504
[21] Dall, S. R.X.; Houston, A. I.; McNamara, J. M., The behavioural ecology of personality: consistent individual differences from an adaptive perspective, Ecol. Lett., 7, 734-739 (2004)
[22] Denrell, J.; March, J. G., Adaptation as information restriction: the hot stove effect, Organ. Sci., 12, 523-538 (2001)
[23] Dukas, R., Constraints on information processing and their effects on behavior, (Dukas, R., Cognitive Ecology: the Evolutionary Ecology of Information Processing and Decision Making (1998), University of Chicago Press: University of Chicago Press Chicago), 89-127
[24] Dukas, R., Costs of memory: ideas and predictions, J. Theor. Biol., 197, 41-50 (1999)
[25] Dukas, R.; Duan, J. J., Potential fitness consequences of associative learning in a parasitoid wasp, Behav. Ecol., 11, 536-543 (2000)
[26] Eliassen, S.; Jorgensen, C.; Mangel, M.; Giske, J., Quantifying the adaptive value of learning in foraging behavior, Am. Nat., 174, 478-489 (2009)
[27] Feldman, M. W.; Aoki, K.; Kumm, J., Individual versus social learning: evolutionary analysis in a fluctuating environment, Anthropol. Sci., 104, 209-231 (1996)
[28] Fritz, J.; Kotrschal, K., Social learning in common ravens, Corvus corax, Anim. Behav., 57, 785-793 (1999)
[29] Galef, B. G.; Laland, K. N., Social learning in animals: empirical studies and theoretical models, Bioscience, 55, 489-499 (2005)
[30] Giraldeau, L. A.; Lefebvre, L., Scrounging prevents cultural transmission of food-finding behavior in pigeons, Anim. Behav., 35, 387-394 (1987)
[31] Giraldeau, L. A.; Caraco, T., Social Foraging Theory (2000), Princeton University Press: Princeton University Press Princeton
[32] Giraldeau, L. A.; Dubois, F., Social foraging and the study of exploitative behavior, Adv. Stud. Behav., 38, 59-104 (2008)
[33] Groß, R.; Houston, A. I.; Collins, E. J.; McNamara, J. M.; Dechaume-Moncharmont, F. X.; Franks, N. R., Simple learning rules to cope with changing environments, J. R. Soc. Interface, 5, 1193-1202 (2008)
[34] Hamblin, S.; Giraldeau, L.-A., Finding the evolutionarily stable learning rule for frequency-dependent foraging, Anim. Behav., 78, 1343-1350 (2009)
[35] Harley, C. B., Learning the evolutionarily stable strategy, J. Theor. Biol., 89, 611-633 (1981)
[36] Houston, A. I.; Sumida, B. H., Learning rules, matching and frequency-dependence, J. Theor. Biol., 126, 289-308 (1987)
[37] Johnston, T. D., Selective costs and benefits in the evolution of learning, Adv. Stud. Behav., 12, 65-106 (1982)
[38] Katsnelson, E.; Motro, U.; Feldman, M. W.; Lotem, A., Early experience affects producer-scrounger foraging tendencies in the house sparrow, Anim. Behav., 75, 1465-1472 (2008)
[39] Kerr, B.; Feldman, M. W., Carving the cognitive niche: optimal learning strategies in homogeneous and heterogeneous environments, J. Theor. Biol., 220, 169-188 (2003) · Zbl 1464.92285
[40] Laland, K. N., Social learning strategies, Learn. Behav., 32, 4-14 (2004)
[41] Lefebvre, L.; Helder, R., Scrounger numbers and the inhibition of social learning in pigeons, Behav. Processes, 40, 201-207 (1997)
[42] Lendvai, A. Z.; Barta, Z.; Liker, A.; Bokony, V., The effect of energy reserves on social foraging: hungry sparrows scrounge more, Proc. R. Soc. B, 271, 2467-2472 (2004)
[43] Liker, A.; Barta, Z., The effects of dominance on social foraging tactic use in house sparrows, Behaviour, 139, 1061-1076 (2002)
[44] Liker, A.; Bokony, V., Larger groups are more successful in innovative problem solving in house sparrows, Proc. Natl. Acad. Sci. USA, 106, 7893-7898 (2009)
[45] Lotem, A., Learning to recognize nestlings is maladaptive for cuckoo Cuculus canorus hosts, Nature, 362, 743-745 (1993)
[46] March, J. G., Learning to be risk averse, Psychol. Rev., 103, 309-319 (1996)
[47] McNamara, J. M.; Houston, A. I., Memory and the efficient use of information, J. Theor. Biol., 125, 385-395 (1987)
[48] Mery, F.; Kawecki, T. J., Experimental evolution of learning ability in fruit flies, Proc. Natl. Acad. Sci. USA, 99, 14274-14279 (2002)
[49] Mery, F.; Kawecki, T. J., A fitness cost of learning ability in Drosophila melanogaster, Proc. R. Soc. B, 270, 2465-2469 (2003)
[50] Mery, F.; Kawecki, T. J., An operating cost of learning in Drosophila melanogaster, Anim. Behav., 68, 589-598 (2004)
[51] Mery, F.; Belay, A. T.; So, A. K.C.; Sokolowski, M. B.; Kawecki, T. J., Natural polymorphism affecting learning and memory in Drosophila, Proc. Natl. Acad. Sci. USA, 104, 13051-13055 (2007)
[52] Niv, Y.; Joel, D.; Meilijson, I.; Ruppin, E., Evolution of reinforcement learning in uncertain environments: a simple explanation for complex foraging behaviors, Adapt. Behav., 10, 5-24 (2002)
[53] Plomin, R., The genetics of \(g\) in human and mouse, Nat. Rev. Neurosci., 2, 136-141 (2001)
[54] Raine, N. E.; Chittka, L., The correlation of learning speed and natural foraging success in bumble-bees, Proc. R. Soc. B, 275, 803-808 (2008)
[55] Rodriguez-Girones, M. A.; Lotem, A., How to detect a cuckoo egg: a signal-detection theory model for recognition and learning, Am. Nat., 153, 633-648 (1999)
[56] Rogers, A. R., Does biology constrain culture?, Am. Anthropol., 90, 819-831 (1988)
[57] Shafir, S.; Reich, T.; Tsur, E.; Erev, I.; Lotem, A., Perceptual accuracy and conflicting effects of certainty on risk-taking behaviour, Nature, 453, 917-920 (2008)
[58] Sibly, R. M., Models of producer/scrounger relationships between and within species, (Barnard, C. J., Producers and Scroungers: Strategies of Exploitation and Parasitism (1984), Croom Helm: Croom Helm Kent), 267-287
[59] Sih, A.; Bell, A. M., Insights for behavioral ecology from behavioral syndromes, Adv. Stud. Behav., 38, 227-281 (2008)
[60] Sih, A.; Bell, A.; Johnson, J. C., Behavioral syndromes: an ecological and evolutionary overview, Trends Ecol. Evol., 19, 372-378 (2004)
[61] Sih, A.; Bell, A. M.; Johnson, J. C.; Ziemba, R. E., Behavioral syndromes: an integrative overview, Q. Rev. Biol., 79, 241-277 (2004)
[62] Stephens, D. W., On economically tracking a variable environment, Theor. Popul. Biol., 32, 15-25 (1987) · Zbl 0614.92020
[63] Stephens, D. W., Change, regularity, and value in the evolution of animal learning, Behav. Ecol., 2, 77-89 (1991)
[64] Tolman, E. C., The inheritance of maze-learning ability in rats, J. Comp. Psychol., 4, 1-18 (1924)
[65] Tracy, N. D.; Seaman, J. W., Properties of evolutionarily stable learning rules, J. Theor. Biol., 177, 193-198 (1995)
[66] Tryon, R. C., Genetic differences in maze-learning ability in rats, Yearb. Natl. Soc. Stud. Educ., 39, 111-119 (1940)
[67] van Oers, K.; de Jong, G.; van Noordwijk, A. J.; Kempenaers, B.; Drent, P. J., Contribution of genetics to the study of animal personalities: a review of case studies, Behaviour, 142, 1185-1206 (2005)
[68] Wakano, J. Y.; Aoki, K.; Feldman, M. W., Evolution of social learning: a mathematical analysis, Theor. Popul. Biol., 66, 249-258 (2004)
[69] Wolf, M.; van Doorn, G. S.; Weissing, F. J., Evolutionary emergence of responsive and unresponsive personalities, Proc. Natl. Acad. Sci. USA, 105, 15825-15830 (2008)
[70] Wolf, M.; van Doorn, G. S.; Leimar, O.; Weissing, F. J., Life-history trade-offs favour the evolution of animal personalities, Nature, 447, 581-584 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.