×

Entire solutions in nonlocal monostable equations: asymmetric case. (English) Zbl 1409.35117

Summary: This paper is concerned with entire solutions of the monostable equation with nonlocal dispersal, i.e., \(u_{t}=J*u-u+f(u)\). Here the kernel \(J\) is asymmetric. Unlike symmetric cases, this equation lacks symmetry between the nonincreasing and nondecreasing traveling wave solutions. We first give a relationship between the critical speeds \(c^{*}\) and \(\hat{c}^{*}\), where \(c^*\) and \(\hat{c}^{*}\) are the minimal speeds of the nonincreasing and nondecreasing traveling wave solutions, respectively. Then we establish the existence and qualitative properties of entire solutions by combining two traveling wave solutions coming from both ends of real axis and some spatially independent solutions. Furthermore, when the kernel \(J\) is symmetric, we prove that the entire solutions are 5-dimensional, 4-dimensional, and 3-dimensional manifolds, respectively.

MSC:

35K57 Reaction-diffusion equations
35B08 Entire solutions to PDEs
34C14 Symmetries, invariants of ordinary differential equations
Full Text: DOI

References:

[1] F. Andreuvaillo, J. M. Maz \(\acute{o}\) n, J. D. Rossi and J. Toledomelero, Nonlocal Diffusion Problems, Mathematical Surveys and Monographs, AMS, Providence, Rhode Island, 2010. · Zbl 1214.45002
[2] P. W. Bates, On some nonlocal evolution equations arising in materials science, in H. Brunner, X.Q. Zhao and X. Zou (Eds.), Nonlinear dynamics and evolution equations, in: Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 48 (2006), 13-52. · Zbl 1101.35073
[3] P. Bates; P. Fife; X. Ren; X. Wang, Traveling waves in a convolution model for phase transitions, Arch. Rational Mech. Anal., 138, 105-136 (1997) · Zbl 0889.45012 · doi:10.1007/s002050050037
[4] J. Carr; A. Chmaj, Uniqueness of travelling waves for nonlocal monostable equations, Proc. Amer. Math. Soc., 132, 2433-2439 (2004) · Zbl 1061.45003 · doi:10.1090/S0002-9939-04-07432-5
[5] E. Chasseigne; M. Chavesb; J. D. Rossi, Asymptotic behavior for nonlocal diffusion equations, J. Math Pures Appl., 86, 271-291 (2006) · Zbl 1126.35081 · doi:10.1016/j.matpur.2006.04.005
[6] X. F. Chen, Almost periodic traveling waves of nonlocal evolution equations, Nonlinear Anal. TMA, 50, 807-838 (2002) · Zbl 1001.35055 · doi:10.1016/S0362-546X(01)00787-8
[7] F. X. Chen, Existence, uniqueness and asymptotical stability of travelling fronts in non-local evolution equations, Adv. Differential Equations, 2, 125-160 (1997) · Zbl 1023.35513
[8] F. X. Chen; J. S. Guo; H. Ninomiya, Entire solutions of reaction-diffusion equations with balanced bistable nonlinearity, Proc. Roy. Soc. Edinburgh Sect. A, 136, 1207-1237 (2006) · Zbl 1123.35024 · doi:10.1017/S0308210500004959
[9] C. Cortazar; M. Elgueta; J. D. Rossi; N. Wolanski, Boundary fluxes for non-local diffusion, J. Differential Equations, 234, 360-390 (2007) · Zbl 1113.35101 · doi:10.1016/j.jde.2006.12.002
[10] C. Cortazar; M. Elgueta; J. D. Rossi; N. Wolanski, How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems, Arch. Rational Mech. Anal., 187, 137-156 (2008) · Zbl 1145.35060 · doi:10.1007/s00205-007-0062-8
[11] J. Coville, Traveling fronts in asymmetric nonlocal reaction diffusion equation: The bistable and ignition case. Prépublication du CMM, Hal-00696208.
[12] J. Coville; J. Dávila; S. Martínez, Nonlocal anisotropic dispersal with monostable nonlinearity, J. Differential Equations, 244, 3080-3118 (2008) · Zbl 1148.45011 · doi:10.1016/j.jde.2007.11.002
[13] J. Coville; L. Dupaigne, On a nonlocal reaction-diffusion eqution arising in population dynamics, Proc. Roy. Soc. Edinburgh Sect. A, 137, 727-755 (2007) · Zbl 1133.35056
[14] J. Coville, Travelling waves in a nonlocal reaction diffusion equation with ignition nonlinearity, Ph.D. Thesis, Paris: Universit’e Pierre et Marie Curie, 2003.
[15] J. Coville, Maximum principles, sliding techniques and applications to nonlocal equations, Electron. J. Differential Equations, 68, 1-23 (2007) · Zbl 1137.35321
[16] F. D. Dong; W. T. Li; J. B. Wang, Asymptotic behavior of traveling waves for a three-component system with nonlocal dispersal and its application, Discrete Contin. Dyn. Syst., 37, 6291-6318 (2017) · Zbl 1386.35202 · doi:10.3934/dcds.2017272
[17] P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions, Trends in Nonlinear Analysis, Springer, Berlin, (2003), 153-191. · Zbl 1072.35005
[18] F. Hamel; N. Nadirashvili, Entire solution of the KPP eqution, Comm. Pure Appl. Math., 52, 1255-1276 (1999) · Zbl 0932.35113 · doi:10.1002/(SICI)1097-0312(199910)52:103.0.CO;2-W
[19] F. Hamel; N. Nadirashvili, Travelling fronts and entire solutions of the Fisher-KPP equation in \(R^N\), Arch. Rational Mech. Anal., 157, 91-163 (2001) · Zbl 0987.35072 · doi:10.1007/PL00004238
[20] V. Hutson; M. Grinfeld, Non-local dispersal and bistability, Eur. J. Appl. Math., 17, 211-232 (2006) · Zbl 1114.35021 · doi:10.1017/S0956792506006462
[21] V. Hutson; S. Martinez; K. Mischaikow; G. T. Vickers, The evolution of dispersal, J. Math. Biol., 47, 483-517 (2003) · Zbl 1052.92042 · doi:10.1007/s00285-003-0210-1
[22] L. I. Ignat; J. D. Rossi, A nonlocal convection-diffusion equation, J. Functional Analysis, 251, 399-437 (2007) · Zbl 1149.35009 · doi:10.1016/j.jfa.2007.07.013
[23] T. Kawata, Fourier Analysi, Sangyo Tosho Publishing Co. LTD, Tokyo, 1975.
[24] T. S. Lim; A. Alatos, Transition fronts for inhomogeneous Fisher-KPP reactions and non-local diffusion, Trans. Amer. Math. Soc., 368, 8615-8631 (2016) · Zbl 1351.35078 · doi:10.1090/tran/6602
[25] W. T. Li; N. W. Liu; Z. C. Wang, Entire solutions in reaction-advection-diffusion equations in cylinders, J. Math. Pures Appl., 90, 492-504 (2008) · Zbl 1158.35378 · doi:10.1016/j.matpur.2008.07.002
[26] W.-T. Li; Y.-J. Sun; Z.-C. Wang, Entire solutions in the Fisher-KPP equation with nonlocal dispersal, Nonlinear Anal. Real Word Appl., 11, 2302-2313 (2010) · Zbl 1196.35015 · doi:10.1016/j.nonrwa.2009.07.005
[27] W.-T. Li; Z.-C. Wang; J. Wu, Entire solutions in monostable reaction-diffusion equations with delayed nonlinearity, J. Differential Equations, 245, 102-129 (2008) · Zbl 1185.35314 · doi:10.1016/j.jde.2008.03.023
[28] W. T. Li; L. Zhang; G. B. Zhang, Invasion entire solutions in a competition system with nonlocal dispersal, Discrete Contin. Dyn. Syst., 35, 1531-1560 (2015) · Zbl 1319.35088 · doi:10.3934/dcds.2015.35.1531
[29] Y. Morita; H. Ninomiya, Entire solutions with merging fronts to reaction-diffusion equations, J. Dynam. Differential Equations, 18, 841-861 (2006) · Zbl 1125.35050 · doi:10.1007/s10884-006-9046-x
[30] Y. Morita; K. Tachibana, An entire solution to the Lotka-Volterra competition-diffusion equations, SIAM J. Math. Anal., 40, 2217-2240 (2009) · Zbl 1184.35152 · doi:10.1137/080723715
[31] S. Pan; W.-T. Li; G. Lin, Travelling wave fronts in nonlocal reaction-diffusion systems and applications, Z. Angew. Math. Phys., 60, 377-392 (2009) · Zbl 1178.35206 · doi:10.1007/s00033-007-7005-y
[32] K. Schumacher, Traveling-front solutions for integro-differential equations, I, J. Reine. Angew. Math., 316, 54-70 (1980) · Zbl 0419.45004
[33] Y.-J. Sun; W.-T. Li; Z.-C. Wang, Entire solutions in nonlocal dispersal equations with bistable nonlinearity, J. Differential Equations, 251, 551-581 (2011) · Zbl 1228.35017 · doi:10.1016/j.jde.2011.04.020
[34] Y. J. Sun; W. T. Li; Z. C. Wang, Traveling waves for a nonlocal anisotropic dispersal equation with monostable nonnlinearity, Nonlinear Anal. TMA., 74, 814-826 (2011) · Zbl 1211.35068 · doi:10.1016/j.na.2010.09.032
[35] A. Vretblad, Fourier Analysis and Its Applications, Springer-Verlag, New York, 2003. · Zbl 1032.42001
[36] M. Wang; G. Lv, Entire solutions of a diffusion and competitive Lotka-Volterra type system with nonlocal delayed, Nonlinearity, 23, 1609-1630 (2010) · Zbl 1200.35173 · doi:10.1088/0951-7715/23/7/005
[37] Z.-C. Wang; W.-T. Li; S. Ruan, Entire solutions in bistable reaction-diffusion equations with nonlocal delayed nonlinearity, Trans. Amer. Math. Soc., 361, 2047-2084 (2009) · Zbl 1168.35023 · doi:10.1090/S0002-9947-08-04694-1
[38] Z.-C. Wang; W.-T. Li; J. Wu, Entire solutions in delayed lattice differential equations with monostable nonlinearity, SIAM J. Math. Anal., 40, 2392-2420 (2009) · Zbl 1185.37164 · doi:10.1137/080727312
[39] H. F. Weinberger, Long-time behavior of a class of biological models, SIAM J. Math. Anal., 13, 353-396 (1982) · Zbl 0529.92010 · doi:10.1137/0513028
[40] S. L. Wu; Z. X. Shi; F. Y. Yang, Entire solutions in periodic lattice dynamical systems, J. Differential Equations, 255, 3505-3535 (2013) · Zbl 1321.34023 · doi:10.1016/j.jde.2013.07.049
[41] H. Yagisita, Back and global solutions characterizing annihilation dynamics of traveling fronts, Publ. Res. Inst. Math. Sci., 39, 117-164 (2003) · Zbl 1030.35015 · doi:10.2977/prims/1145476150
[42] H. Yagisita, Existence and nonexistence of traveling waves for a nonlocal monostable equation, Publ. Res. Inst. Math. Sci., 45, 925-953 (2009) · Zbl 1191.35093 · doi:10.2977/prims/1260476648
[43] H. Yagisita, Existence of traveling waves for a nonlocal bistable equation: an abstract approach, Publ. Res. Inst. Math. Sci., 45, 955-979 (2009) · Zbl 1191.35094 · doi:10.2977/prims/1260476649
[44] L. Zhang, W. T. Li and Z. C. Wang, Entire solution in an ignition nonlocal dispersal equation: Asymmetric kernel, Sci. China Math., 60 (2017), 1791-1804. · Zbl 1387.35366
[45] L. Zhang; W. T. Li; S. L. Wu, Multi-type entire solutions in a nonlocal dispersal epidemic model, J. Dynam. Differential Equations, 28, 189-224 (2016) · Zbl 1334.35141 · doi:10.1007/s10884-014-9416-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.