×

A study of comparison, existence and regularity of viscosity and weak solutions for quasilinear equations in the Heisenberg group. (English) Zbl 1409.35202

Summary: In this manuscript, we are interested in the study of existence, uniqueness and comparison of viscosity and weak solutions for quasilinear equations in the Heisenberg group. In particular, we highlight the limitation of applying the Euclidean theory of viscosity solutions to get comparison of solutions of sub-elliptic equations in the Heisenberg group. Moreover, we will be concerned with the equivalence of different notions of weak solutions under appropriate assumptions for the operators under analysis. We end the paper with an application to a Radó property.

MSC:

35R03 PDEs on Heisenberg groups, Lie groups, Carnot groups, etc.
35J62 Quasilinear elliptic equations
35B51 Comparison principles in context of PDEs
35B65 Smoothness and regularity of solutions to PDEs
35D40 Viscosity solutions to PDEs
35D30 Weak solutions to PDEs
49L25 Viscosity solutions to Hamilton-Jacobi equations in optimal control and differential games
Full Text: DOI

References:

[1] M. Bardi; P. Mannucci, On the Dirichlet problem for non-totally degenerate fully nonlinear elliptic equations, Commun. Pure Appl. Anal., 5, 709-731 (2006) · Zbl 1142.35041 · doi:10.3934/cpaa.2006.5.709
[2] T. Bieske, A sub-Riemannian maximum principle and its application to the p-Laplacian in Carnot groups, Annales Academiae Scientiarum Fennicae Mathematica, 37, 119-134 (2012) · Zbl 1259.53030 · doi:10.5186/aasfm.2012.3706
[3] T. Bieske, Equivalence of weak and viscosity for the p-Laplace equation in the Heisenberg group, Annales Academiae Scientiarum Fennicae Mathematica, 31, 363-379 (2006) · Zbl 1101.43003
[4] T. Bieske, On ∞-harmonic functions on the Heisenberg group, Communications in PDE, 27, 727-761 (2002) · Zbl 1090.35063 · doi:10.1081/PDE-120002872
[5] L. Caffarelli and X. Cabré, Fully Nonlinear Elliptic Equations, AMS, Colloquium Publications, Vol. 43, USA, 1995. · Zbl 0834.35002
[6] L. Capogna, D. Danielli, S. Pauls and J. Tyson, An introduction to the Heisenberg group and the sub-Riemannian Isoperimetric problem, Basel: Progress in Mathematics, Vol. 259, Birkhauser-Verlag, 2007. · Zbl 1138.53003
[7] L. Capogna, Regularity of quasi-linear equations in the Heisenberg group, Communications on Pure and Applied Analysis, 50, 867-889 (1998) · Zbl 0886.22006 · doi:10.1002/(SICI)1097-0312(199709)50:93.0.CO;2-3
[8] G. Citti; B. Franceschiello; G. Sanguinetti; A. Sarti, Sub-Riemannian mean curvature flow for image processing, SIAM Journal on Imaging Sciences, 9, 212-237 (2016) · Zbl 1352.68272 · doi:10.1137/15M1013572
[9] G. Citti and A. Sarti, A cortical based model of perceptual completion in the roto-translation space, in Proceedings of the Workshop on Second Order Subelliptic Equations and Applications, 2003. · Zbl 1088.92008
[10] G. Citti; A. Sarti, A cortical based model of perceptual completion in the roto-translation space, Journal of Mathematical Imaging and Vision, 24, 307-326 (2006) · Zbl 1478.92100 · doi:10.1007/s10851-005-3630-2
[11] M. Crandall; H. Ishii; P. L. Lions, User’s guide to viscosity solutions of second order partial differential equations, Bulletin of the American Mathematical Society, 27, 1-67 (1992) · Zbl 0755.35015 · doi:10.1090/S0273-0979-1992-00266-5
[12] Y. Dong; G. Lu; L. Sun, Global Poincaré Inequalities on the Heisenberg group and applications, Acta Mathematica Sinica, English Series (2006) · Zbl 1131.46024 · doi:10.1007/s10114-005-0874-0
[13] F. Ferrari; Q. Liu; J. Manfredi, On the horizontal mean curvature flow for axisymmetric surfaces in the Heisenberg group, Communications in Contemporary Mathematics, 16, 1350027 (2014) · Zbl 1304.35389 · doi:10.1142/S0219199713500272
[14] B. Franchi; R. Serapioni; F. Serra-Cassano, Approximation and imbedding theorems for weighted Sobolev spaces associated to Lipschitz continuous vector fields, Bollettino U.M.I., 11B, 83-117 (2001) · Zbl 0952.49010
[15] N. Garofalo; E. Lanconelli, Existence and nonexistence results for semilinear equations on the Heisenberg group, Indiana University Mathematics Journal, 41, 71-98 (1992) · Zbl 0793.35037 · doi:10.1512/iumj.1992.41.41005
[16] N. Garofalo; D. M. Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math., 49, 1081-1144 (1996) · Zbl 0880.35032 · doi:10.1002/(SICI)1097-0312(199610)49:103.0.CO;2-A
[17] Y. Giga, Surface Evolution Equations, A Level Set Approach, Monographs in Mathematics 99, Birkhäuser Verlag, Basel, 2006. · Zbl 1096.53039
[18] R. Horn and C. Johnson, Matrix Analysis, Ed. 23. Cambridge University Press, New York, 2010.
[19] H. Ishiii, On the equivalence of two notions of weak solutions, viscosity solutions and distribution solutions, Funkcial. Ekvac., 38, 101-120 (1995) · Zbl 0833.35053
[20] V. Julin; P. Juutinen, A new proof for the equivalence of weak and viscosity solutions for the p-Laplace equation, Communications in PDE, 37, 934-946 (2012) · Zbl 1260.35069 · doi:10.1080/03605302.2011.615878
[21] P. Juutinen; P. Lindqvist, A theorem of Radó’s type for the solutions of a quasi-linear equation, Mathematical Research Letters, 11, 31-34 (2004) · Zbl 1153.35324 · doi:10.4310/MRL.2004.v11.n1.a4
[22] P. Juutinen; P. Lindqvist; J. Manfredi, On the equivalence of viscosity solutions and weak solutions for a quasilinear equation, SIAM Journal on Mathematical Analysis, 33, 699-717 (2001) · Zbl 0997.35022 · doi:10.1137/S0036141000372179
[23] D. Kinderleher and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Classics in Applied Mathematics, SIAM, 2000. · Zbl 0988.49003
[24] P-L. Lions, Optimal control of diffusion process and Hamilton-Jacobi-Bellman equations, Part 2: viscosity solutions and uniqueness, Comm. in P.D.E., 8, 1229-1276 (1983) · Zbl 0716.49023 · doi:10.1080/03605308308820301
[25] J. Manfredi, Non-linear subelliptic equations on Carnot groups: Analysis and geometry in metric spaces, Notes of a course given at the Third School on Analysis and Geometry in Metric Spaces, Trento, 2003.
[26] P. Mannucci, The Dirichlet problem for fully nonlinear elliptic equations non-degenerate in a fixed direction, Commun. Pure Appl. Anal., 13, 119-133 (2014) · Zbl 1273.35142 · doi:10.3934/cpaa.2014.13.119
[27] V. Martino; A. Montanari, Nonsmooth solutions for a class of fully nonlinear PDE’s on Lie groups, Nonlinear Anal., 126, 115-130 (2015) · Zbl 1322.35148 · doi:10.1016/j.na.2015.02.009
[28] V. Martino; A. Montanari, Lipschitz continuous viscosity solutions for a class of fully nonlinear equations on Lie groups, J. Geom. Anal., 24, 169-189 (2014) · Zbl 1302.35384 · doi:10.1007/s12220-012-9332-2
[29] M. Medina and P. Ochoa, On viscosity and weak solutions for non-homogeneous p-Laplace equations, Advances in Nonlinear Analysis, to appear, arXiv: math/161009216. · Zbl 1419.35075
[30] R. Monti; D. Morbidelli, Regular domains in homogeneous groups, Transactions of the AMS, 357, 2975-3011 (2005) · Zbl 1067.43003 · doi:10.1090/S0002-9947-05-03799-2
[31] R. Monti, Distances, Boundaries and Surface Measures in Carnot-Carathéodory Spaces, PhD Thesis in Mathematics, Università di Trento, 2001. · Zbl 1032.49045
[32] P. Ochoa; J. A. Ruiz, Existence and uniqueness results for linear second-order equations in the Heisenberg group, Annales Academiae Scientiarum Fennicae Mathematica, 42, 1063-1085 (2017) · Zbl 1430.35234 · doi:10.5186/aasfm.2017.4264
[33] P. Pucci and J. Serrin, The Maximum Principle, Birkhäuser, Vol. 73, Berlin, 2007. · Zbl 1134.35001
[34] G. Wang, Viscosity convex functions on Carnot groups, Proceedings of the American Mathematical Society, 133, 1247-1253 (2004) · Zbl 1057.22012 · doi:10.1090/S0002-9939-04-07836-0
[35] G. Yuan; Z. Yuan, Dirichlet problems for linear and semilinear sub-Laplace equations on Carnot groups, Journal of Inequalities and Applications, 2012, 1-12 (2012) · Zbl 1279.35024 · doi:10.1186/1029-242X-2012-136
[36] J. Wang; P. Hong; D. Liao; Z. Yu, Partial regularity for non-linear elliptic systems with Dini continuous coefficients in the Heisenberg group, Abstract and Applied Analysis, 1-12 (2013) · Zbl 1470.35162 · doi:10.1155/2013/950134
[37] C. Xu, The Dirichlet problem for a class of semi-linear subelliptic equations, Nonlinear Analysis, 37, 1039-1049 (1999) · Zbl 0942.35086 · doi:10.1016/S0362-546X(97)00722-0
[38] C. Xu; C. Zuily, Higher interior regularity for quasilinear subelliptic systems, Calc. Var., 5, 323-343 (1997) · Zbl 0902.35019 · doi:10.1007/s005260050069
[39] C. Xu, An existence result for a class of semilinear degenerate elliptic equations, Adv. in Math., 22, 492-499 (1996) · Zbl 0868.35039
[40] C. Xu, Dirichlet problems for the quasilinear second order subelliptic equations, Acta Mathematica Sinica, New Series, 12, 18-32 (1996) · Zbl 0838.35046 · doi:10.1007/BF02109387
[41] C. Xu, Existence of bounded solutions for quasilinear subelliptic Dirichlet problems, J. Partial Diff. Eqs., 8, 97-107 (1995) · Zbl 0836.35037
[42] C. Xu, Semilinear subelliptic equations and Sobolev inequality for vector fields satisfying Hörmandar’s condition, Chinise Journal of Contemporary Mathematics, 15, 183-192 (1994) · Zbl 0816.35015
[43] C. Xu, Subelliptic variational problems, Bulletin de la S. M. F., 118, 147-169 (1990) · Zbl 0717.49004
[44] J. Zhang; P. Niu, Existence results for positive solutions of semilinear equations on the Heisenberg group, Nonlinear Analysis, Theory, Methods and Applications, 31, 181-189 (1998) · Zbl 0907.35043 · doi:10.1016/S0362-546X(96)00303-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.