×

Ground states of nonlinear Schrödinger systems with periodic or non-periodic potentials. (English) Zbl 1415.35115

Summary: In this paper we study a class of weakly coupled Schrödinger system arising in several branches of sciences, such as nonlinear optics and Bose-Einstein condensates. Instead of the well known super-quadratic condition that \(\lim_{|z|\rightarrow\infty}\frac{F(x,z)}{|z|^2} = \infty\) uniformly in \(x\), we introduce a new local super-quadratic condition that allows the nonlinearity \(F\) to be super-quadratic at some \(x\in \mathbb{R}^N\) and asymptotically quadratic at other \(x\in \mathbb{R}^N\). Employing some analytical skills and using the variational method, we prove some results about the existence of ground states for the system with periodic or non-periodic potentials. In particular, any nontrivial solutions are continuous and decay to zero exponentially as \(|x| \rightarrow \infty\). Our main results extend and improve some recent ones in the literature.

MSC:

35J50 Variational methods for elliptic systems
35J47 Second-order elliptic systems
35J10 Schrödinger operator, Schrödinger equation
Full Text: DOI

References:

[1] A. Ambrosetti; G. Cerami; D. Ruiz, Solitons of linearly coupled systems of semilinear non-autonomous equations on \(\begin{document} \mathbb{R}^N\end{document} \), J. Funct. Anal., 254, 2816-2845 (2008) · Zbl 1148.35080 · doi:10.1016/j.jfa.2007.11.013
[2] A. Ambrosetti; P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14, 349-381 (1973) · Zbl 0273.49063
[3] T. Bartsch; A. Pankov; Z.-Q. Wang, Nonlinear Schrödinger equations with steep potential well, Commun. Contemp. Math., 3, 549-569 (2001) · Zbl 1076.35037 · doi:10.1142/S0219199701000494
[4] T. Bartsch, Z.-Q. Wang and M. Willem, The Dirichlet problem for superlinear elliptic equations, in Handbook of Differential Equations-Stationary Partial Differential Equations (eds. M. Chipot and P. Quittner), vol. 2, Elsevier, 2005, pp. 1-5 (Chapter 1). · Zbl 1207.35001
[5] H. Brezis; E. H. Lieb, Minimum action solutions of some vector field equations, Commun. Math. Phys., 96, 97-113 (1984) · Zbl 0579.35025
[6] G. W. Chen; S. W. Ma, Asymptotically or super linear cooperative elliptic systems in the whole space, Sci. China Math., 56, 1181-1194 (2013) · Zbl 1279.35037 · doi:10.1007/s11425-013-4567-3
[7] G. W. Chen; S. W. Ma, Infinitely many solutions for resonant cooperative elliptic systems with sublinear or superlinear terms, Calc. Var., 49, 271-286 (2014) · Zbl 1288.35234 · doi:10.1007/s00526-012-0581-5
[8] G. W. Chen; S. W. Ma, Nonexistence and multiplicity of solutions for nonlinear elliptic systems of \(\begin{document} \mathbb{R}^N\end{document} \), Nonlinear Anal.-Real World Appl., 36, 233-248 (2017) · Zbl 1368.35109 · doi:10.1016/j.nonrwa.2017.01.012
[9] R. Cipolatti; W. Zumpichiatti, On the existence and regularity of ground states for a nonlinear system of coupled Schrödinger equations in \(\begin{document} \mathbb{R}^N\end{document} \), Comput. Appl. Math., 18, 15-29 (1999) · Zbl 0927.35104
[10] D. G. Costa, On a Class of Elliptic Systems in \(\begin{document} \mathbb{R}^N\end{document} \), Electron. J. Differential Equations, 7, 1-14 (1994) · Zbl 0809.35020
[11] D. G. Costa; C. A. Magalhães, A variational approach to subquadratic perturbations of elliptic systems, J. Differential Equations, 111, 103-122 (1994) · Zbl 0803.35052 · doi:10.1006/jdeq.1994.1077
[12] Y. H. Ding, Varitional Methods for Strongly Indefinite Problems, World Scientific, Singapore, 2008.
[13] Y. H. Ding; C. Lee, Multiple solutions of Schrödinger equations with indefinite linear part and super or asymptotically linear terms, J. Differential Equations, 222, 137-163 (2006) · Zbl 1090.35077 · doi:10.1016/j.jde.2005.03.011
[14] D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators, Clarendon Press, Oxford, 1987. · Zbl 0628.47017
[15] Y. Egorov and V. Kondratiev, On Spectral Theory of Elliptic Operators, Birkhäuser, Basel, 1996. · Zbl 0855.35001
[16] B. D. Esry; C. H. Greene; J. P. Burke Jr; J. L. Bohn, Hartree-Fock theory for double condensates, Phys. Rev. Lett., 78, 3594-3597 (1997)
[17] A. Hasegawa and Y. Kodama, Solitons in Optical Communications, Oxford University Press, Oxford, 1995. · Zbl 0840.35092
[18] M. N. Islam, Ultrafast Fiber Switching Devices and Systems, Cambridge University Press, New York, 1992.
[19] W. Kryszewski; A. Szulkin, Generalized linking theorem with an application to a semilinear Schrödinger equations, Adv. Differential Equations, 3, 441-472 (1998) · Zbl 0947.35061
[20] G. Li; A. Szulkin, An asymptotically periodic equation with indefinite linear part, Commun. Contemp. Math., 4, 763-776 (2002) · Zbl 1056.35065 · doi:10.1142/S0219199702000853
[21] L. Li; C-L. Tang, Infinitely many solutions for resonance elliptic systems, C. R. Acad. Sci. Paris, Ser. I, 353, 35-40 (2015) · Zbl 1310.35096 · doi:10.1016/j.crma.2014.10.010
[22] Z. L. Liu; Z-Q. Wang, On the Ambrosetti-Rabinowitz superlinear condition, Adv. Nonlinear Stud., 4, 561-572 (2004) · Zbl 1113.35048 · doi:10.1515/ans-2004-0411
[23] L. Ma; L. Zhao, Uniqueness of ground states of some coupled nonlinear Schrödinger systems and their application, J. Differential Equations, 245, 2551-2565 (2008) · Zbl 1154.35083 · doi:10.1016/j.jde.2008.04.008
[24] L. A. Maia; E. Montefusco; B. Pellacci, Positive solutions for a weakly coupled nonlinear Schrödinger system, J. Differential Equations, 229, 743-767 (2006) · Zbl 1104.35053 · doi:10.1016/j.jde.2006.07.002
[25] S. W. Ma, Nontrivial solutions for resonant cooperative elliptic systems via computations of the critical groups, Nonlinear Anal., 73, 3856-3872 (2010) · Zbl 1202.35086 · doi:10.1016/j.na.2010.08.013
[26] J. Mederski, Ground states of a system of nonlinear Schrödinger equations with periodic potentials, Commun. Partial Differ. Equ., 41, 1426-1440 (2016) · Zbl 1353.35267 · doi:10.1080/03605302.2016.1209520
[27] C. R. Menyuk, Nonlinear pulse propagation in birefringent optical fibers, IEEE J. Quant. Electron, 23, 174-176 (1987)
[28] A. M. Molchanov, On the discreteness of the spectrum conditions for self-adjoint differential equations of the second order, Trudy Mosk. Matem. Obshchestva, 2 (1953), 169-199 (in Russian). · Zbl 0052.10201
[29] A. Pankov, Periodic nonlinear Schrödinger equation with application to photonic crystals, Milan J. Math., 73, 259-287 (2005) · Zbl 1225.35222 · doi:10.1007/s00032-005-0047-8
[30] A. Pankov, On decay of solutions to nolinear Schrödinger equations, Proc. Amer. Math. Soc., 136, 2565-2570 (2008) · Zbl 1143.35093 · doi:10.1090/S0002-9939-08-09484-7
[31] D. D. Qin; X. H. Tang, Solutions on asymptotically periodic elliptic system with new conditions, Results. Math., 70, 539-565 (2016) · Zbl 1358.35032 · doi:10.1007/s00025-015-0491-x
[32] D. D. Qin; Y. B. He; X. H. Tang, Ground and bound states for non-linear Schrödinger systems with indefinite linear terms, Complex Var. Elliptic Equ., 62, 1758-1781 (2017) · Zbl 1377.35076 · doi:10.1080/17476933.2017.1281256
[33] D. D. Qin; J. Chen; X. H. Tang, Existence and non-existence of nontrivial solutions for Schrödinger systems via Nehari-Pohozaev manifold, Comput. Math. Appl., 74, 3141-3160 (2017) · Zbl 1400.35095 · doi:10.1016/j.camwa.2017.08.010
[34] Q. F. Wu; D. D. Qin, Ground and bound states of periodic Schrödinger equations with super or asymptotically linear terms, Electronic Journal of Differential Equations, 25, 1-26 (2018) · Zbl 1383.35070
[35] P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43, 270-291 (1992) · Zbl 0763.35087 · doi:10.1007/BF00946631
[36] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. Ⅳ, Analysis of Operators, Academic Press, New York, 1978. · Zbl 0401.47001
[37] M. Schechter; B. Simon, Unique continuation for Schrödinger operators with unbounded potentials, J. Math. Anal. Appl., 77, 482-492 (1980) · Zbl 0458.35024 · doi:10.1016/0022-247X(80)90242-5
[38] M. Schechter; W. M. Zou, Weak linking theorems and Schrödinger equations with critical Soblev exponent, ESAIM Contral Optim. Calc. Var., 9, 601-619 (electronic) (2003) · Zbl 1173.35482 · doi:10.1051/cocv:2003029
[39] B. Simon, Schrödinger semigroup, Bull. Amer. Math. Soc., 7, 447-526 (1982) · Zbl 0524.35002 · doi:10.1090/S0273-0979-1982-15041-8
[40] A. Szulkin; T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257, 3802-3822 (2009) · Zbl 1178.35352 · doi:10.1016/j.jfa.2009.09.013
[41] X. H. Tang, Non-Nehari manifold method for asymptotically periodic Schrödinger equation, Sci. China Math., 58, 715-728 (2015) · Zbl 1321.35055 · doi:10.1007/s11425-014-4957-1
[42] X. H. Tang, X. Y. Lin and J. S. Yu, Nontrivial solutions for Schrödinger equation with local super-quadratic conditions, J. Dyn. Differ. Equ., (2018), DOI: 10.1007/s10884-018-9662-2. · Zbl 1414.35062
[43] E. Timmermans, Phase seperation of Bose Einstein condensates, Phys. Rev. Lett., 81, 5718-5721 (1998)
[44] J. Vélin; F. de Thélin, Existence and non-existence of nontrivial solutions for some nonlinear elliptic systems, Rev. Mat. Univ. Complutense Madrid, 6, 153-154 (1993) · Zbl 0834.35042
[45] J. C. Wei; W. Yao, Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations, Commun. Pure Appl. Anal., 11, 1003-1011 (2012) · Zbl 1264.35237 · doi:10.3934/cpaa.2012.11.1003
[46] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. · Zbl 0856.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.