×

Singular integrals supported by subvarieties for vector-valued functions. (English) Zbl 1423.42029

If \(\mathbf{X}\) is a Banach space, \(\boldsymbol{\Gamma}: \mathbb{R}^k\rightarrow \mathbb{R}^n\) is a \(C^\infty\)-mapping and \(K\) is a Calderón-Zygmund kernel in \(\mathbb{R}^k\), then a vector-valued singular integral \(T_\Gamma\) is defined on \(\mathscr{S} (\mathbb{R}^n, \mathbf{X})\) by \[ T_\Gamma f(x)= p.v. \int_{\mathbb{R}^k} f(x-\Gamma(t)) K(t) \, dt. \] Let the class \(\mathcal{I}\) be formed by those UMD spaces \(\mathbf{X}\) which are isomorphic to a closed subspace of a complex interpolation space \([\mathbf{H}, \mathbf{Y}]_\theta, 0<\theta<1\), between a Hilbert space \(\mathbf{H}\) and another UMD space \(\mathbf{Y}\). The main result of the paper reads as follows:
Theorem. If \(\mathbf{X}\in\mathcal{I}\) and \(\mathcal{P}(t)=(\mathcal{P}_1(t),\mathcal{P}_2(t),\dots,\mathcal{P}_n(t))\), where \(\mathcal{P}_j, j=1,\dots,n,\) are polynomials in \(t\in \mathbb{R}^k\), then, for any \(p\in (1,\infty)\), there exists a constant \(C_p>0\) such that \[ \|T_{\mathcal{P}}f\|_{L^p(\mathbb{R}^n; \mathbf{X})}\le C_p \|f\|_{L^p(\mathbb{R}^n;\mathbf7X}). \] The constant \(C_p\) may depend on \(\mathbf{X}, k, n\) and the total degree of \(\mathcal{P}\), but it is independent on the coefficients of \(\mathcal{P}\).

MSC:

42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
46B09 Probabilistic methods in Banach space theory
Full Text: DOI

References:

[1] A.Benedek, A. P.Caldern and R.Panzone, Convolution operators on Banach space valued functions, Proc. Natl. Acad. Sci. USA48 (1962), 356-365.10.1073/pnas.48.3.356 · Zbl 0103.33402 · doi:10.1073/pnas.48.3.356
[2] E.Berkson and T. A.Gillespie, An M_q(T)-functional calculus for power-bounded operators on certain UMD spaces, Studia Math.167 (2005), 245-257.10.4064/sm167-3-6 · Zbl 1076.47010 · doi:10.4064/sm167-3-6
[3] J.Bourgain, “Vector-valued singular integrals and the H^1 -BMO duality”, in Probability Theory and Harmonic Analysis (Cleveland, 1983), Pure Appl. Math. 98, Dekker, New York, 1986, 1-19. · Zbl 0602.42015
[4] D. L.Burkholder, “A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions”, in Conference on Harmonic Analysis in Honor of Antoni Zygmund, Vols I and II (Chicago, III, 1981), Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, 270-286.
[5] T.Hytönen, Anisotropic Fourier multipliers and singular integrals for vector-valued functions, Ann. Mat.186 (2007), 455-468.10.1007/s10231-006-0014-1 · Zbl 1223.42007 · doi:10.1007/s10231-006-0014-1
[6] T.Hytönen and L.Weis, Singular convolution integrals with operator-valued kernel, Math. Z.255 (2007), 393-425.10.1007/s00209-006-0043-x · Zbl 1189.45017 · doi:10.1007/s00209-006-0043-x
[7] H.Liu, The boundedness of maximal operators and singular integrals via Fourier transform estimates, Acta Math. Sin. (Engl. Ser.)28 (2012), 2227-2242.10.1007/s10114-011-0543-4 · Zbl 1256.42022 · doi:10.1007/s10114-011-0543-4
[8] G.Hong and H.Liu, Vector-valued Hilbert transforms along curves, Banach J. Math. Anal.10 (2016), 430-450.10.1215/17358787-3589397 · Zbl 1337.43003 · doi:10.1215/17358787-3589397
[9] T. R.McConnell, On Fourier multiplier transformations of Banach-valued functions, Trans. Amer. Math. Soc.285 (1984), 739-757.10.1090/S0002-9947-1984-0752501-X · Zbl 0566.42009 · doi:10.1090/S0002-9947-1984-0752501-X
[10] D. H.Phong and E. M.Stein, Hilbert integrals, singular integrals and Radon transforms I, Acta Math.157 (1986), 99-157.10.1007/BF02392592 · Zbl 0622.42011 · doi:10.1007/BF02392592
[11] F.Ricci and E. M.Stein, Harmonic analysis on nilpotent groups and singular integrals. II. Singular kernels supported on submanifolds, J. Funct. Anal.78 (1988), 56-84.10.1016/0022-1236(88)90132-2 · Zbl 0645.42019 · doi:10.1016/0022-1236(88)90132-2
[12] J. L.Rubio de Francia, F. J.Ruiz and J. L.Torrea, Calderón-Zygmund theory for operator-valued kernels, Adv. Math.62 (1986), 7-48.10.1016/0001-8708(86)90086-1 · Zbl 0627.42008 · doi:10.1016/0001-8708(86)90086-1
[13] J. L.Rubio de Francia, “Martingale and integral transforms of Banach space valued functions”, in Probability and Banach spaces (Zaragoza, 1985), Lecture Notes in Mathematics 1221, Springer, Berlin, 1986, 195-222.10.1007/BFb0099115 · Zbl 0615.60041 · doi:10.1007/BFb0099115
[14] E. M.Stein and S.Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. (N.S.)84 (1978), 1239-1295.10.1090/S0002-9904-1978-14554-6 · Zbl 0393.42010 · doi:10.1090/S0002-9904-1978-14554-6
[15] E. M.Stein, Interpolation of linear operators, Trans. Amer. Math. Soc.83 (1956), 482-492.10.1090/S0002-9947-1956-0082586-0 · Zbl 0072.32402 · doi:10.1090/S0002-9947-1956-0082586-0
[16] E. M.Stein, “Some problems in harmonic analysis suggested by symmetric spaces and semi-simple groups”, in Actes du Congrs International des Mathmaticiens, Vol. 1 (Nice, 1970), Gauthier-Villars, Paris, 1971, 173-189. · Zbl 0252.43022
[17] E. M.Stein, “Problems in harmonic analysis related to curvature and oscillatory integrals”, in Proceedings of the International Congress of Mathematicians, Berkeley, California, USA, 1986, 196-221. · Zbl 0718.42012
[18] E. M.Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993. · Zbl 0821.42001
[19] F.Zimmermann, On vector-valued Fourier multiplier theorems, Studia Math.93 (1989), 201-222.10.4064/sm-93-3-201-222 · Zbl 0686.42008 · doi:10.4064/sm-93-3-201-222
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.