×

On vanishing theorems for local systems associated to Laurent polynomials. (English) Zbl 1408.14161

Let \(B=\{ b(1), b(2), \ldots ,b(N)\} \subset \mathbb{Z}^{n-1}\) be a finite subset of the lattice \(\mathbb{Z}^{n-1}\) such that the affine lattice generated by \(B\) in \(\mathbb{Z}^{n-1}\) coincides with \(\mathbb{Z}^{n-1}\). The authors consider Laurent polynomials \(P(x)=\sum_{j=1}^Nz_jx^{b(j)}\) and for \(c=(c_1,\ldots ,c_n)\in \mathbb{C}^n\), possibly multivalued functions of the form \(P(x)^{-c_n}x_1^{c_1-1}\cdots x_{n-1}^{c_{n-1}-1}\). These generate rank-one local systems on \((\mathbb{C}^*)^{n-1}\setminus P^{-1}(0)\). The authors extend results of I. M. Gelfand et al. [Adv. Math. 84, No. 2, 255–271 (1990; Zbl 0741.33011)] about concentration of cohomology in middle degrees. In the course of the proof, some properties of vanishing cycles of perverse sheaves and twisted Morse theory are used.

MSC:

14M25 Toric varieties, Newton polyhedra, Okounkov bodies
32S22 Relations with arrangements of hyperplanes
32S60 Stratifications; constructible sheaves; intersection cohomology (complex-analytic aspects)
33C70 Other hypergeometric functions and integrals in several variables
52C35 Arrangements of points, flats, hyperplanes (aspects of discrete geometry)

Citations:

Zbl 0741.33011

References:

[1] A.Adolphson, Hypergeometric functions and rings generated by monomials, Duke Math. J.73 (1994), 269-290.10.1215/S0012-7094-94-07313-4 · Zbl 0804.33013 · doi:10.1215/S0012-7094-94-07313-4
[2] K.Ando, A.Esterov and K.Takeuchi, Monodromies at infinity of confluent A-hypergeometric functions, Adv. Math.272 (2015), 1-19.10.1016/j.aim.2014.10.024 · Zbl 1328.14083 · doi:10.1016/j.aim.2014.10.024
[3] K.Aomoto and M.Kita, Theory of Hypergeometric Functions, Monographs in Mathematics, Springer, Tokyo, Dordrecht, Heidelberg, London, New York, 2011.10.1007/978-4-431-53938-4 · Zbl 1229.33001 · doi:10.1007/978-4-431-53938-4
[4] A.Dimca, Sheaves in Topology, Universitext, Springer, Berlin, 2004.10.1007/978-3-642-18868-8 · Zbl 1043.14003 · doi:10.1007/978-3-642-18868-8
[5] A.Esterov, Index of a real singular point and its Newton diagram, Moscow Univ. Math. Bull.58 (2003), 7-11. · Zbl 1052.58039
[6] A.Esterov and K.Takeuchi, Motivic Milnor fibers over complete intersection varieties and their virtual Betti numbers, Int. Math. Res. Not. IMRN2012(15) (2012), 3567-3613.10.1093/imrn/rnr154 · Zbl 1250.32025 · doi:10.1093/imrn/rnr154
[7] A.Esterov and K.Takeuchi, Confluent A-hypergeometric functions and rapid decay homology cycles, Amer. J. Math.137 (2015), 365-409.10.1353/ajm.2015.0014 · Zbl 1321.33018 · doi:10.1353/ajm.2015.0014
[8] W.Fulton, Introduction to Toric Varieties, Princeton University Press, Princeton, 1993. · Zbl 0813.14039
[9] I. M.Gelfand, M.Kapranov and A.Zelevinsky, Hypergeometric functions and toral manifolds, Funct. Anal. Appl.23 (1989), 94-106.10.1007/BF01078777 · Zbl 0721.33006 · doi:10.1007/BF01078777
[10] I. M.Gelfand, M.Kapranov and A.Zelevinsky, Generalized Euler integrals and A-hypergeometric functions, Adv. Math.84 (1990), 255-271.10.1016/0001-8708(90)90048-R · Zbl 0741.33011 · doi:10.1016/0001-8708(90)90048-R
[11] I. M.Gelfand, M.Kapranov and A.Zelevinsky, Discriminants, Resultants and Multidimensional Determinants, Birkhäuser, New York, 1994.10.1007/978-0-8176-4771-1 · Zbl 0827.14036 · doi:10.1007/978-0-8176-4771-1
[12] R.Hotta, K.Takeuchi and T.Tanisaki, D-modules, Perverse Sheaves and Representation Theory, Progress in Mathematics, Birkhäuser, Boston, 2008.10.1007/978-0-8176-4523-6 · Zbl 1136.14009 · doi:10.1007/978-0-8176-4523-6
[13] A. G.Khovanskii, Newton polyhedra and toroidal varieties, Funct. Anal. Appl.11 (1978), 289-296.10.1007/BF01077143 · Zbl 0445.14019 · doi:10.1007/BF01077143
[14] A. G.Khovanskii, Newton polyhedra and the genus of complete intersections, Funct. Anal. Appl.12 (1978), 38-46.10.1007/BF01077562 · Zbl 0406.14035 · doi:10.1007/BF01077562
[15] A. G.Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math.32 (1976), 1-31.10.1007/BF01389769 · Zbl 0328.32007 · doi:10.1007/BF01389769
[16] A.Libgober and S.Sperber, On the zeta function of monodromy of a polynomial map, Compos. Math.95 (1995), 287-307. · Zbl 0968.14006
[17] Y.Matsui and K.Takeuchi, A geometric degree formula for A-discriminants and Euler obstructions of toric varieties, Adv. Math.226 (2011), 2040-2064.10.1016/j.aim.2010.08.020 · Zbl 1205.14062 · doi:10.1016/j.aim.2010.08.020
[18] Y.Matsui and K.Takeuchi, Milnor fibers over singular toric varieties and nearby cycle sheaves, Tohoku Math. J.63 (2011), 113-136.10.2748/tmj/1303219938 · Zbl 1223.32019 · doi:10.2748/tmj/1303219938
[19] Y.Matsui and K.Takeuchi, Monodromy at infinity, Newton polyhedra and constructible sheaves, Math. Z.268 (2011), 409-439.10.1007/s00209-010-0678-5 · Zbl 1264.14005 · doi:10.1007/s00209-010-0678-5
[20] Y.Matsui and K.Takeuchi, Monodromy at infinity of polynomial maps and Newton polyhedra, with Appendix by C. Sabbah, Int. Math. Res. Not. IMRN2013(8) (2013), 1691-1746. · Zbl 1314.32044
[21] F.Matusevich, E.Miller and U.Walther, Homological methods for hypergeometric families, J. Amer. Math. Soc.18 (2005), 919-941.10.1090/S0894-0347-05-00488-1 · Zbl 1095.13033 · doi:10.1090/S0894-0347-05-00488-1
[22] T.Oda, Convex Bodies and Algebraic Geometry: An Introduction to The Theory of Toric Varieties, Springer, Berlin, Heidelberg, 1988. · Zbl 0628.52002
[23] M.Oka, Non-Degenerate Complete Intersection Singularity, Hermann, Paris, 1997. · Zbl 0930.14034
[24] A.Pajitnov, Circle-Valued Morse Theory, de Gruyter Studies in Mathematics 32, Walter de Gruyter, Berlin, 2006.10.1515/9783110197976 · Zbl 1118.58007 · doi:10.1515/9783110197976
[25] F.Pham, Le descente des cols par les onglets de Lefschetz, avec vues sur Gauss-Manin, Astérisque130 (1985), 14-47. · Zbl 0597.32012
[26] M.Saito, B.Sturmfels and N.Takayama, Gröbner Deformations of Hypergeometric Differential Equations, Springer, Berlin, Heidelberg, New York, 2000.10.1007/978-3-662-04112-3 · Zbl 0946.13021 · doi:10.1007/978-3-662-04112-3
[27] K.Takeuchi, Monodromy at infinity of A-hypergeometric functions and toric compactifications, Math. Ann.348 (2010), 815-831.10.1007/s00208-010-0501-y · Zbl 1203.14059 · doi:10.1007/s00208-010-0501-y
[28] A.Zaharia, On the bifurcation set of a polynomial function and Newton boundary II, Kodai Math. J.19 (1996), 218-233.10.2996/kmj/1138043601 · Zbl 0867.32013 · doi:10.2996/kmj/1138043601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.