×

Discrete linear Weingarten surfaces. (English) Zbl 1411.53007

Authors’ abstract: Discrete linear Weingarten surfaces in space forms are characterized as special discrete \(\Omega\)-nets, a discrete analogue of Demoulin’s \(\Omega\)-surfaces. It is shown that the Lie-geometric deformation of \(\Omega\)-nets descends to a Lawson transformation for discrete linear Weingarten surfaces, which coincides with the well-known Lawson correspondence in the constant mean curvature case.

MSC:

53A05 Surfaces in Euclidean and related spaces
52B70 Polyhedral manifolds
51K10 Synthetic differential geometry
52A39 Mixed volumes and related topics in convex geometry
53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
53A40 Other special differential geometries

References:

[1] W.Blaschke, Vorlesungen über Differentialgeometrie III, Springer Grundlehren XXIX, Berlin, 1929. · JFM 55.0422.01
[2] A.Bobenko and Y.Suris, Discrete Differential Geometry: Integrable Structure, Graduate Studies in Mathematics 98, American Mathematical Society, Providence, 2008. · Zbl 1158.53001
[3] A.Bobenko, H.Pottmann and J.Wallner, A curvature theory for discrete surfaces based on mesh parallelity, Math. Ann.348 (2010), 1-24.10.1007/s00208-009-0467-9 · Zbl 1219.51014 · doi:10.1007/s00208-009-0467-9
[4] A.Bobenko, U.Hertrich-Jeromin and I.Lukyanenko, Discrete constant mean curvature nets via Königs duality, Discrete Comput. Geom.52 (2014), 612-629.10.1007/s00454-014-9622-5 · Zbl 1312.53011 · doi:10.1007/s00454-014-9622-5
[5] F.Burstall, N.Donaldson, F.Pedit and U.Pinkall, Isothermic submanifolds of symmetric R-spaces, J. Reine Angew. Math.660 (2011), 191-243. · Zbl 1245.53049
[6] F.Burstall, U.Hertrich-Jeromin, W.Rossman and S.Santos, Discrete surfaces of constant mean curvature, RIMS Kyokuroku Bessatsu1880 (2014), 133-179.
[7] F.Burstall, U.Hertrich-Jeromin and W.Rossman, Lie geometry of flat fronts in hyperbolic space, C. R.348 (2010), 661-663. · Zbl 1201.53061
[8] F.Burstall, U.Hertrich-Jeromin and W.Rossman, Lie geometry of linear Weingarten surfaces, C. R.350 (2012), 413-416. · Zbl 1252.53018
[9] T.Cecil, Lie Sphere Geometry, With applications to submanifolds, Universitext, Springer, New York, 1992.10.1007/978-1-4757-4096-7 · Zbl 0752.53003 · doi:10.1007/978-1-4757-4096-7
[10] A.Demoulin, Sur les surfaces R et les surfaces 𝛺, C. R.153 (1911), 590-593; 705-707. · JFM 42.0695.02
[11] A.Demoulin, Sur les surfaces 𝛺, C. R.153 (1911), 927-929. · JFM 42.0634.01
[12] A.Doliwa, Generalized isothermic lattices, J. Phys. A: Math. Theor.40 (2007), 12539-12561.10.1088/1751-8113/40/42/S03 · Zbl 1129.37042 · doi:10.1088/1751-8113/40/42/S03
[13] U.Hertrich-Jeromin, E.Tjaden and M.Zürcher, On Guichard’s nets and cyclic systems. EPrint arXiv:dg-ga/9704003 (1997).
[14] U.Hertrich-Jeromin, Introduction to Möbius Differential Geometry, London Mathematical Society Lecture Note Series 300, Cambridge University Press, Cambridge, 2003.10.1017/CBO9780511546693 · Zbl 1040.53002 · doi:10.1017/CBO9780511546693
[15] T.Hoffmann, W.Rossman, T.Sasaki and M.Yoshida, Discrete flat surfaces and linear Weingarten surfaces in hyperbolic 3-space, Trans. Amer. Math. Soc.364 (2012), 5605-5644.10.1090/S0002-9947-2012-05698-4 · Zbl 1277.53053 · doi:10.1090/S0002-9947-2012-05698-4
[16] E.Musso and L.Nicolodi, Deformation and applicability of surfaces in Lie sphere geometry, Tôhoku Math. J.58 (2006), 161-187.10.2748/tmj/1156256399 · Zbl 1155.53306 · doi:10.2748/tmj/1156256399
[17] R.Palais and C.-L.Terng, Critical Point Theory and Submanifold Geometry, Lecture Notes in Mathematics 1353, Springer, Berlin, 1988.10.1007/BFb0087442 · Zbl 0658.49001 · doi:10.1007/BFb0087442
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.