×

Multitype threshold growth: Convergence to Poisson-Voronoi tessellations. (English) Zbl 0892.60096

Summary: A Poisson-Voronoi tessellation (PVT) is a tiling of the Euclidean plane in which centers of individual tiles constitute a Poisson field and each tile comprises the locations that are closest to a given center with respect to a prescribed norm. Many spatial systems in which rare, randomly distributed centers compete for space should be well approximated by a PVT. Examples that we can handle rigorously include multitype threshold vote automata, in which \(\kappa\) different camps compete for voters stationed on the two-dimensional lattice. According to the deterministic, discrete-time update rule, a voter changes affiliation only to that of a unique opposing camp having more than \(\theta\) representatives in the voter’s neighborhood. We establish a PVT limit for such dynamics started from completely random configurations, as the number of camps becomes large, so that the density of initial “pockets of consensus” tends to 0. Our methods combine nucleation analysis, Poisson approximation, and shape theory.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
05B15 Orthogonal arrays, Latin squares, Room squares
Full Text: DOI

References:

[1] Adamatzky, A. (1994). Identification of Cellular Automata. Tay lor & Francis, London. · Zbl 0847.68071
[2] Arratia, R., Goldstein, L. and Gordon, L. (1989). Two moments suffice for Poisson approximation: the Chen-Stein method. Ann. Probab. 17 9-25. · Zbl 0675.60017 · doi:10.1214/aop/1176991491
[3] Asplund, E. and Gr ünbaum, B. (1960). On the geometry of Minkowski planes. Enseign. Math. 6 299-306. · Zbl 0102.36804
[4] Attouch, H. and Wets, R. J.-B. (1991). Quantitative stability of variational sy stems I. The epigraphical distance. Trans. Amer. Math. Soc. 382 695-729. JSTOR: · Zbl 0753.49007 · doi:10.2307/2001800
[5] Benjamini, I. and Schramm, O. (1996). Conformal invariance of Voronoi percolation. · Zbl 0921.60081 · doi:10.1007/s002200050443
[6] Bohman, T. (1997). Discrete threshold growth dy namics are omnivorous for box neighborhoods. Trans. Amer. Math. Soc. To appear. JSTOR: · Zbl 0914.60067 · doi:10.1090/S0002-9947-99-02018-8
[7] Daley, D. J. and Vere-Jones, D. (1988). An Introduction to the Theory of Point Processes. Springer, New York. · Zbl 0657.60069
[8] Durrett, R. (1988). Lecture Notes on Particle Sy stems and Percolation. Wadsworth & Brooks/Cole, Belmont, CA. · Zbl 0659.60129
[9] Durrett, R. (1992). Multicolor particle sy stems with large threshold and range. J. Theoret. Probab. 4 127-154. · Zbl 0751.60095 · doi:10.1007/BF01046781
[10] Durrett, R. and Griffeath, D. (1993). Asy mptotic behavior of excitable cellular automata. Experimental Math. 2 184-208. · Zbl 0796.60100 · doi:10.1080/10586458.1993.10504277
[11] Durrett, R. and Steif, J. (1993). Fixation results for threshold voter sy stems. Ann. Probab. 21 232-247. · Zbl 0769.60092 · doi:10.1214/aop/1176989403
[12] Fisch, R., Gravner, J. and Griffeath, D. (1991). Threshold-range scaling for the excitable cellular automata. Statistics and Computing 1 23-39. · Zbl 0737.60088
[13] Fisch, R., Gravner, J. and Griffeath, D. (1993). Metastability in the Greenberg-Hastings model. Ann. Appl. Probab. 3 935-967. · Zbl 0787.60122 · doi:10.1214/aoap/1177005268
[14] Gravner, J. and Griffeath, D. (1993). Threshold growth dy namics. Trans. Amer. Math. Soc. 340 837-870. JSTOR: · Zbl 0791.58053 · doi:10.2307/2154679
[15] Gravner, J. and Griffeath, D. (1996). First passage times for threshold growth dy namics on Z2. Ann. Probab. 24 1752-1778. · Zbl 0872.60077 · doi:10.1214/aop/1041903205
[16] Gravner, J. and Griffeath, D. (1997). Nucleation parameters for discrete threshold growth dy namics. Experiment. Math. · Zbl 0899.60085 · doi:10.1080/10586458.1997.10504610
[17] Griffeath, D. (1994). Self-organization of random cellular automata: four snapshots. In Probability and Phase Transitions (G. Grimmett, ed.). Kluwer, Dordrecht. · Zbl 0827.60083
[18] Griffeath, D. (1995). Primordial soup kitchen. http://math.wisc.edu/ griffeat/kitchen.html. URL:
[19] Grimmett, G. (1989). Percolation. Springer, New York. · Zbl 0691.60089
[20] Johnson, W. A. and Mehl, R. F. (1939). Reaction kinetics in processes of nucleation and growth. Trans. A.I.M.M.E. 135 416-458.
[21] Møller, J. (1994). Lectures on Random Voronoi Tessellations. Springer, New York. · Zbl 0812.60016
[22] Okabe, A., Boots, B. and Sugihara, K. (1992). Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, New York. · Zbl 0877.52010
[23] Salinetti, G. and Wets, R. J.-B. (1981). On the convergence of closed-valued measurable multifunctions. Trans. Amer. Math. Soc. 266 275-289. JSTOR: · Zbl 0501.28005 · doi:10.2307/1998398
[24] Salinetti, G. and Wets, R. J.-B. (1986). On the convergence in distribution of measurable multifunctions (random sets), normal integrands, stochastic processes and stochastic infima. Math. Oper. Res. 11 385-419. JSTOR: · Zbl 0611.60004 · doi:10.1287/moor.11.3.385
[25] Santal o, L. A. (1976). Integral Geometry and Geometric Probability. Addison-Wesley, Reading, MA. · Zbl 0342.53049
[26] Vahidi-Asl, M. Q. and Wierman, J. (1992). A shape result for first-passage percolation on the Voronoi tessellation and Delaunay triangulation. In Random Graphs (A. Frieze and T. Luczak, eds.) 2 247-262. Wiley, New York. · Zbl 0816.60099
[27] Willson, S. J. (1978). On convergence of configurations. Discrete Math. 23 279-300. · Zbl 0395.52005 · doi:10.1016/0012-365X(78)90009-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.