×

A kind of product integration scheme for solving fractional ordinary differential equations. (English) Zbl 1405.65180

Summary: In this paper, we construct a kind of product integration scheme for the nonlinear fractional ordinary differential equation. We design the scheme by considering the equivalent Volterra integral equation and using the idea of local Fourier expansion. We prove the high accuracy property of the new scheme and provide the stability analysis. Numerical experiments demonstrate the effectiveness of the scheme.

MSC:

65R20 Numerical methods for integral equations
65L05 Numerical methods for initial value problems involving ordinary differential equations
34A08 Fractional ordinary differential equations
45D05 Volterra integral equations
Full Text: DOI

References:

[1] Baratella, P.; Orsi, A. P., A new approach to the numerical solution of weakly singular Volterra integral equations, J. Comput. Appl. Math., 163, 2, 401-418, (2004) · Zbl 1038.65144
[2] Blank, L., Stability of collocation for weakly singular Volterra equations, IMA J. Numer. Anal., 15, 3, 357-375, (1995) · Zbl 0830.65135
[3] Blank, L., Stability results for collocation methods for Volterra integral equations, Appl. Math. Comput., 79, 2-3, 267-288, (1996) · Zbl 0870.65137
[4] Brugnano, L.; Iavernaro, F.; Trigiante, D., A simple framework for the derivation and analysis of effective one-step methods for ODEs, Appl. Math. Comput., 218, 17, 8475-8485, (2012) · Zbl 1245.65086
[5] Cao, J.; Xu, C., A high order scheme for the numerical solution of the fractional ordinary differential equations, J. Comput. Phys., 238, 154-168, (2013) · Zbl 1286.65092
[6] Cao, W.; Zhang, Z.; Karniadakis, G. E., Time-splitting schemes for fractional differential equations I: smooth solutions, SIAM J. Sci. Comput., 37, 4, A1752-A1776, (2015) · Zbl 1320.65106
[7] Deng, W.; Hesthaven, J. S., Local discontinuous Galerkin methods for fractional ordinary differential equations, BIT Numer. Math., 55, 4, 967-985, (2014) · Zbl 1344.65071
[8] Diethelm, K., The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, (2010), Springer: Springer Berlin · Zbl 1215.34001
[9] Diethelm, K.; Ford, N. J.; Freed, A. D., A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn., 29, 1, 3-22, (2002) · Zbl 1009.65049
[10] Diethelm, K.; Ford, N. J.; Freed, A. D., Detailed error analysis for a fractional Adams method, Numer. Algorithms, 36, 1, 31-52, (2004) · Zbl 1055.65098
[11] Garrappa, R., Trapezoidal methods for fractional differential equations: theoretical and computational aspects, Math. Comput. Simul., 110, 1, 96-112, (2015) · Zbl 1540.65194
[12] Garrappa, R.; Popolizio, M., On accurate product integration rules for linear fractional differential equations, J. Comput. Appl. Math., 235, 5, 1085-1097, (2011) · Zbl 1206.65176
[13] Hilfer, R., Applications of Fractional Calculus in Physics, (2000), World Scientific: World Scientific Singapore · Zbl 0998.26002
[14] Holte, J. M., Discrete Gronwall lemma and applications, (MAA-NCS Meeting at the University of North Dakota, vol. 24, (2009)), 1-7
[15] Jin, B.; Raytcho, L.; Joseph, P.; Zhou, Z., Error analysis of a finite element method for the space-fractional parabolic equation, SIAM J. Numer. Anal., 52, 5, 2272-2294, (2014) · Zbl 1310.65126
[16] Li, C.; Zeng, F., The finite difference methods for fractional ordinary differential equations, Numer. Funct. Anal. Optim., 34, 2, 149-179, (2013) · Zbl 1267.65094
[17] Li, C.; Chen, A.; Ye, J., Numerical approaches to fractional calculus and fractional ordinary differential equation, J. Comput. Phys., 230, 9, 3352-3368, (2011) · Zbl 1218.65070
[18] Li, C.; Yi, Q.; Chen, A., Finite difference methods with non-uniform meshes for nonlinear fractional differential equations, J. Comput. Phys., 316, 614-631, (2016) · Zbl 1349.65246
[19] Lubich, C., Fractional linear multistep methods for Abel-Volterra integral equations of the second kind, Math. Comput., 45, 172, 463-469, (1985) · Zbl 0584.65090
[20] Machado, J. T.; Kiryakova, V.; Mainardi, F., Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul., 16, 3, 1140-1153, (2011) · Zbl 1221.26002
[21] Miller, K. S.; Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, (1993), Wiley: Wiley New York · Zbl 0789.26002
[22] Orsi, A., Product integration for Volterra integral equations of the second kind with weakly singular kernels, Math. Comput., 65, 215, 1201-1212, (1996) · Zbl 0858.65136
[23] Podlubny, I., Fractional Differential Equations, (1999), Academic Press: Academic Press New York · Zbl 0918.34010
[24] Rasty, M.; Hadizadeh, M., A product integration approach based on new orthogonal polynomials for nonlinear weakly singular integral equations, Acta Appl. Math., 109, 3, 861-873, (2010) · Zbl 1192.65165
[25] Wang, B.; Iserles, A.; Wu, X., Arbitrary-order trigonometric Fourier collocation methods for multi-frequency oscillatory systems, Found. Comput. Math., 16, 1, 151-181, (2016) · Zbl 1341.65029
[26] Yan, Y.; Pal, K.; Ford, N. J., Higher order numerical methods for solving fractional differential equations, BIT Numer. Math., 54, 2, 555-584, (2014) · Zbl 1304.65173
[27] Zayernouri, M.; Karniadakis, G. E., Exponentially accurate spectral and spectral element methods for fractional ODEs, J. Comput. Phys., 257, 2, 460-480, (2014) · Zbl 1349.65257
[28] Zhao, L.; Deng, W., Jacobian-predictor-corrector approach for fractional differential equations, Adv. Comput. Math., 40, 1, 137-165, (2014) · Zbl 1322.65079
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.