×

Behavior types and features of lateral strain and Poisson’s ratio of isotropic rheonomous materials under creep conditions described by the linear theory of viscoelasticity. (Russian. English summary) Zbl 1459.74033

Summary: The Boltzmann-Volterra linear constitutive equation for isotropic non-aging viscoelastic materials (with an arbitrary shear and bulk creep compliances) is studied analytically in order to find out its capabilities to provide an adequate qualitative description of rheological phenomena related to creep under uni-axial loading and types of evolution of the Poisson’s ratio (lateral contraction ratio in creep) and to outline the control scopes of the material functions. The constitutive equation doesn’t involve the third invariants of stress and strain tensors (or the Lode-Nadai coefficients) and implies that their hydrostatic and deviatoric parts don’t depend on each other. It is controlled by two material functions of a positive real argument (that is shear creep compliance and bulk creep compliance); they are implied to be positive, differentiable, increasing and convex functions. General properties of the creep curves for volumetric, longitudinal and lateral strain generated by the model under uni-axial loading are studied. Conditions for creep curves monotonicity and for existence of extrema and sign changes of strains and the Poisson’s ratio evolution in time are studied. The influence of qualitative restrictions imposed on its material functions is analyzed. The expressions for Poisson’s ratio through the strain triaxiality ratio and in terms of creep compliances are derived. Assuming creep compliances are arbitrary (permissible), general accurate two-sided bounds for the Poisson’s ratio range are obtained; it is proved that the lateral contraction ratio in creep is greater than -1 and less than 0,5 at any moment of time. Additional restrictions on material functions and stress levels are derived to provide negative values of Poisson’s ratio. Criteria for the Poisson’s ratio increase or decrease and for its non-dependence on time are found. In particular, it is proved that the linear relation is able to simulate non-monotonic behavior and sign changes of lateral strain and Poisson’s ratio under constant axial load.

MSC:

74D05 Linear constitutive equations for materials with memory
74A20 Theory of constitutive functions in solid mechanics

References:

[1] Khokhlov A. V., “Analysis of properties of creep curves generated by the linear viscoelasticity theory under arbitrary loading programs at initial stage”, J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 22:1 (2018), 65-95 (in Russ.) · Zbl 1424.74017 · doi:10.14498/vsgtu1543
[2] Khokhlov A. V., “Two-sided bounds for relaxation modulus in the linear viscoelasticity via relaxation curves at ramp strain histories and identification techniques”, Izvestiya Rossiyskoy akademii nauk. Mekhanika tverdogo tela, 2018, no. 3, 81-104 (in Russ.) · doi:10.7868/S0572329918030108
[3] Khokhlov A. V., “Analysis of creep curves produced by the linear viscoelasticity theory under cyclic stepwise loadings”, J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 21:2 (2017), 326-361 (in Russ.) · Zbl 1413.74025 · doi:10.14498/vsgtu1533
[4] Khokhlov A. V., “Long-term strength curves produced by the linear viscoelasticity theory combined with failure criteria accounting for strain history”, Trudy MAI, 2016, no. 91, 1-32 (in Russ.)
[5] Khokhlov A. V., “Asymptotic behavior of creep curves in the Rabotnov nonlinear heredity theory under piecewise constant loadings and memory decay conditions”, Moscow University Mechanics Bulletin, 72:5 (2017), 103-107 · Zbl 1394.74019 · doi:10.3103/S0027133017050016
[6] Khokhlov A. V., “Analysis of Creep Curves General Properties under Step Loading Generated by the Rabotnov Nonlinear Relation for Viscoelastic Plastic Materials”, Herald of the Bauman Moscow State Technical University. Series Natural Sciences, 2017, no. 3(72), 93-123 (in Russ.) · doi:10.18698/1812-3368-2017-3-93-123
[7] Khokhlov A. V., “Analysis of properties of ramp stress relaxation curves produced by the Rabotnov non-linear hereditary theory”, Mechanics of Composite Materials, 54:4 (2018), 473-486 · doi:10.1007/s11029-018-9757-1
[8] Khokhlov A. V., “Properties of stress-strain curves family generated by the Rabotnov non-linear relation for viscoelastic materials”, Izvestiya Rossiyskoy akademii nauk. Mekhanika tverdogo tela, 2018, no. 6 (in Russ.)
[9] Rabotnov Yu.N., “Equilibrium of elastic medium with heredity”, Prikladnaya matematika i mekhanika, 12:1 (1948), 53-62 (in Russ.) · Zbl 0036.24903
[10] Rabotnov Yu.N., Creep problems in structural members, Nauka Publ., M., 1966, 752 pp. (in Russ.)
[11] Freudental A.M., Geiringer H., The mathematical theories of the inelastic continuum, v. VI, Handbuch der Physik, ed. von S. Flugge, Springer Verl., Berlin a. o., 1958
[12] Il’yushin A. A., Pobedrya B. E., Fundamentals of the Mathematical Theory of Thermo-viscoelasticity, Nauka Publ., M., 1970, 280 pp. (in Russ.)
[13] Christensen R. M., Theory of viscoelasticity, Acad. Press, N.-Y.-L., 1971, 245 pp.
[14] Rabotnov Yu.N., Elements of hereditary solid mechanics, Mir Publishers, M., 1977, 384 pp.
[15] Aynbinder S. B., Tyunina E. L., Tsirule K. I., Properties of Polymers under various stress states, Khimiya Publ., M., 1981, 232 pp. (in Russ.)
[16] Gol’dman A. Ya., Volumetric deformation of plastics, Mashinostroenie Publ., L., 1984, 232 pp. (in Russ.)
[17] R.S. Lakes, Viscoelastic Materials, Cambridge Univ. Press, Cambridge, 2009, 462 pp. · Zbl 1049.74012
[18] N.W. Tschoegl, “Time Dependence in Material Properties: An Overview”, Mechanics of Time-Dependent Materials, 1:1 (1997), 3-31 · doi:10.1023/A:1009748023394
[19] N.N. Hilton, “Implications and constraints of time-independent Poisson”s Ratios in linear isotropic and anisotropic viscoelasticity”, Journal of elasticity and the physical science of solids, 63:3 (2001), 221-251 · Zbl 1009.74013 · doi:10.1023/A:1014457613863
[20] N.W. Tschoegl, W.G. Knauss, I. Emri, “Poisson”s ratio in linear viscoelasticity — a critical review”, Mechanics of Time-Dependent Materials, 6:1 (2002), 3-51 · doi:10.1023/A:1014411503170
[21] Lomakin E. V., “Mechanics of media with stress-state dependent properties”, Physical Mesomechanics, 10:5-6 (2007), 255-264 · Zbl 1151.91325 · doi:10.1016/j.physme.2007.11.004
[22] D.J. O’Brien, N.R. Sottos, S.R. White, “Cure-dependent Viscoelastic Poisson”s Ratio of Epoxy”, Experimental mechanics, 47:2 (2007), 237-249 · doi:10.1007/s11340-006-9013-9
[23] D. Tscharnuter, M. Jerabek, Z. Major, R.W. Lang, “Time-dependent Poisson”s ratio of polypropylene compounds for various strain histories”, Mechanics of Time-Dependent Materials, 15:1 (2011), 15-28 · doi:10.1007/s11043-010-9121-x
[24] Zhukov A. M., “On Poisson”s Ratio in plastic domain”, Izvestiya AN SSSR. Otd. tekhn. Nauk, 1954, no. 12, 86-91 (in Russ.)
[25] Brekhova V. D., “Investigation of the Poisson”s ratio of certain crystalline polymers under a constant compressive load”, Polimer mechanics, 1:4 (1965), 23-24 · Zbl 0171.31603 · doi:10.1007/BF00858886
[26] Dzene I. Ya., Putans A. V., “Poisson”s ratio of polyethylene in one-dimensional creep”, Polimer mechanics, 3:5 (1967), 626-627 · doi:10.1007/BF00859258
[27] Kalinnikov A. E., Vakhrushev A. V., “Relation between lateral and longitudinal strains in materials with tension-compression asymmetry under uniaxil creep”, Mekhanika kompozitnykh materialov, 1985, no. 2, 351-354 (in Russ.)
[28] Savinykh A. S., Garkushin G. V., Razorenov S. V., Kanel G. I., “Longitudinal and bulk compressibility of soda-lime glass at pressures to 10 GPa”, Technical Physics, 52:3 (2007), 328-332 · doi:10.1134/S1063784207030073
[29] Kozhevnikova M. E., “Plastic Zone Boundary and Poisson”s Ratio Depending on Plastic Loosening”, Physical Mesomechanics, 16:2 (2013), 162-169 · doi:10.1134/S1029959913020070
[30] Lomakin E. V., “Non-linear deformation of materials with stress-state dependent properties”, Izvestiya Rossiyskoy akademii nauk. Mekhanika tverdogo tela, 1980, no. 4, 92-99 (in Russ.)
[31] Shcherbak V. V., Gol’dman A. Ya., “Volume changes in dispersely filled composites under creep tests”, Mekhanika kompozitnykh materialov, 1982, no. 3, 549-552 (in Russ.)
[32] S. Ozupek, E.B. Becker, “Constitutive Equations for Solid Propellants”, Journal of Engineering Materials and Technology, 119:2 (1997), 125-132 · doi:10.1115/1.2805983
[33] Bykov D. L., Peleshko V. A., “Constitutive Relations for Strain and Failure of Filled Polymer Materials in Dominant Axial Tension Processes under Various Barothermal Conditions”, Mechanics of Solids, 43:6 (2008), 870-891 · doi:10.3103/S0025654408060058
[34] H. Shekhar, A.D. Sahasrabudhe, “Longitudinal Strain Dependent Variation of Poissons Ratio for HTPB Based Solid Rocket Propellants in Uni-axial Tensile Testing”, Propellants, Explosives, Pyrotechnics, 36:6 (2011), 558-563 · doi:10.1002/prep.200900079
[35] H.R. Cui, G.J. Tang, Z.B. Shen, “Study on viscoelastic Poisson”s ratio of solid propellants using digital image correlation method”, Propellants Explosives Pyrotechnics, 41:5 (2016), 835-843 · doi:10.1002/prep.201500313
[36] Dzene I. Ya., Kregers A. F., Vilks U. K., “Characteristic features of the deformation process on creep and secondary creep of polymers under conditions of uni-axial tension. Part I”, Polimer mechanics, 10:3 (1974), 337-342 · doi:10.1007/BF00865585
[37] R. Lakes, “Foam structure with a negative Poisson”s ratio”, Science, 235:4792 (1987), 1038-1040 · doi:10.1126/science.235.4792.1038
[38] E.A. Friis, R.S. Lakes, J.B. Park, “Negative Poisson”s ratio polymeric and metallic materials”, Journal of Materials Science, 23:12 (1988), 4406-4414 · doi:10.1007/BF00551939
[39] Berlin Al. Al., Rotenburg L., Basert R., “Structure of isotropic materials with a negative Poisson”s ratio”, Vysokomolekulyarnye soedineniya B, 33:8 (1991), 619-621 (in Russ.)
[40] Berlin Al. Al., Rotenburg L., Basert R., “Specific features of deformation of non-ordered polymeric and non-polymeric solids”, Vysokomolekulyarnye soedineniya A, 34:7 (1992), 6-32 (in Russ.)
[41] G.W. Milton, “Composite materials with Poisson”s ratios close to -1”, Journal of the Mechanics and Physics of Solids, 40:5 (1992), 1105-1137 · Zbl 0780.73047 · doi:10.1016/0022-5096(92)90063-8
[42] R.S. Lakes, K. Elms, “Indentability of Conventional and Negative Poisson”s Ratio Foams”, Journal of Composite Materials, 27:12 (1993), 1193-1202 · doi:10.1177/002199839302701203
[43] B.D. Saddock, K.E. Evans, “Negative Poisson ratios and strain-dependent mechanical properties in arterial prostheses”, Biomaterials, 16:14 (1995), 1109-1115 · doi:10.1016/0142-9612(95)98908-W
[44] N. Chan, K.E. Evans, “Indentation resilience of conventional and auxetic foams”, Journal of Cellular Plastics, 34:3 (1998), 231-260 · doi:10.1177/0021955X9803400304
[45] K.L. Alderson, A. Fitzgerald, K.E. Evans, “The strain dependent indentation resilience of auxetic microporous polyethylene”, Journal of Materials Science, 35:16 (2000), 4039-4047 · doi:10.1023/A:1004830103411
[46] Konyek D. A., Voytsekhovski K. V., Pleskachevskiy Yu. M., Shil’ko S. V., “Materials with negative Poisson”s ratio. A review”, Mekhanika kompozitnykh materialov i konstruktsiy, 10:1 (2004), 35-69 (in Russ.)
[47] A.L. Greer, R.S. Lakes, T. Rouxel, G.N. Greaves, “Poisson”s ratio and modern materials”, Nature Materials, 10:11 (2011), 823-837 · doi:10.1038/nmat3134
[48] A.C. Fischer-Cripps, Nanoindentation, Springer-Verlag, New York, 2002, 197 pp. · doi:10.1007/978-0-387-22462-6
[49] W.C. Oliver, G.M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology”, Journal of Materials Research, 19:1 (2004), 3-20 · doi:10.1557/jmr.2004.19.1.3
[50] M. Oyen, “Analytical techniques for indentation of viscoelastic materials”, Philosophical Magazine, 86:33-35 (2006), 5625-5641 · doi:10.1080/14786430600740666
[51] Golovin Yu.I., Nanoindentation and its capabilities, Mashinostroenie Publ., M., 2009, 311 pp. (in Russ.)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.