×

Size-dependent behavior of functionally graded anisotropic composite plates. (English) Zbl 1423.74544

Summary: Based on the modified couple-stress theory, the size-dependent behavior of the functionally graded anisotropic elastic composites is analytically investigated when the load is applied on the top surface of the composite plate. The functionally graded material is assumed to be exponential in the thickness direction of the plate. By expanding the solutions of the displacements in terms of the two-dimensional Fourier series, the final governing equations are reduced to an eigenvalue and eigenvector problem. The exact solutions of the elastic fields with the modified couple-stress effect are derived under two kinds of boundary conditions. The classical elastic solutions are reduced from the present solutions as a special case. Numerical examples show the effect of the functional gradient factor and the material length-scale on the elastic fields along the thickness direction of the plate. Some important features observed in this paper could be useful in designing the functionally graded laminated composites with size-dependency.

MSC:

74K20 Plates
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
Full Text: DOI

References:

[1] Ansari, R.; Gholami, R.; Faghih Shojaei, M.; Mohammadi, V.; Sahmani, S., Size-dependent bending, buckling and free vibration of functionally graded Timoshenko microbeams based on the most general strain gradient theory, Composite Structures, 100, 385-397, (2013)
[2] Asghari, M.; Ahmadian, M. T.; Kahrobaiyan, M. H.; Rahaeifard, M., On the size-dependent behavior of functionally graded micro-beams, Materials & Design, 31, 5, 2324-2329, (2010)
[3] Asghari, M.; Kahrobaiyan, M. H.; Ahmadian, M. T., A nonlinear Timoshenko beam formulation based on the modified couple stress theory, International Journal of Engineering Science, 48, 12, 1749-1761, (2010) · Zbl 1231.74258
[4] Asghari, M.; Rahaeifard, M.; Kahrobaiyan, M. H.; Ahmadian, M. T., The modified couple stress functionally graded Timoshenko beam formulation, Materials & Design, 32, 3, 1435-1443, (2011) · Zbl 1271.74257
[5] Ashoori Movassagh, A.; Mahmoodi, M. J., A micro-scale modeling of Kirchhoff plate based on modified strain-gradient elasticity theory, European Journal of Mechanics A/Solids, 40, 50-59, (2013) · Zbl 1406.74067
[6] Chen, W. J.; Chen, W. W.; Sze, K. Y., A model of composite laminated reddy beam based on a modified couple-stress theory, Composite Structures, 94, 8, 2599-2609, (2012)
[7] Chen, W. J.; Li, L.; Xu, M., A modified couple stress model for bending analysis of composite laminated beams with first order shear deformation, Composite Structures, 93, 11, 2723-2732, (2011)
[8] Chen, W. J.; Li, X. P., A new modified couple stress theory for anisotropic elasticity and microscale laminated Kirchhoff plate model, Archive of Applied Mechanics, 84, 3, 323-341, (2014) · Zbl 1368.74034
[9] Chen, W. J.; Xu, M.; Li, L., A model of composite laminated reddy plate based on new modified couple stress theory, Composite Structures, 94, 7, 2143-2156, (2012)
[10] Chong, A. C.M.; Lam, D. C.C., Strain gradient plasticity effect in indentation hardness of polymers, Journal of Materials Research, 14, 10, 4103-4110, (1999)
[11] Cosserat, E.; Cosserat, F., Theory of deformable bodies, (1909), Scintific Library A. Hermann and Sons Paris · JFM 38.0693.02
[12] Craciunescu, C. M.; Wuttig, M., New ferromagnetic and functionally grade shape memory alloys, Journal of Optoelectronics and Advanced Materials, 5, 39, 139-146, (2003)
[13] Delale, F.; Erdogan, F., The crack problem for a nonhomogeneous plane, Journal of Applied Mechanics, 50, 3, 609-614, (1983) · Zbl 0542.73118
[14] Erdogan, F.; Chen, Y. F., Interfacial cracking of FGM/metal bonds, (Kokini, K., Ceramic Coating, (1998)), 29-37
[15] Erdogan, F.; Wu, B. H., The surface crack problem for a plate with functionally graded properties, Journal of Applied Mechanics, 64, 3, 449-456, (1997) · Zbl 0900.73615
[16] Farokhi, H.; Ghayesh, M. H., Size-dependent parametric dynamics of imperfect microbeams, International Journal of Engineering Science, 99, 39-55, (2016) · Zbl 1423.74472
[17] Fleck, N. A.; Muller, G. M.; Ashby, M. F.; Hutchinson, J. W., Strain gradient plasticity: theory and experiment, Acta Metallurgica et Materialia, 42, 2, 475-487, (1994)
[18] Fu, Y. Q.; Du, H. J.; Huang, W. M.; Zhang, S.; Hu, M., Tini-based thin films in MEMS applications: A review, Sensors and Actuators A: Physical, 112, 2-3, 395-408, (2004)
[19] Fu, Y. Q.; Du, H. J.; Zhang, S., Functionally graded tin/tini shape memory alloy films, Materials Letters, 57, 20, 2995-2999, (2003)
[20] Gao, X. L.; Zhang, G. Y., A non-classical Kirchhoff plate model incorporating microstructure, surface energy and foundation effects, Continuum Mechanics and Thermodynamics, 28, 1, 195-213, (2016) · Zbl 1348.74213
[21] Gu, P.; Asaro, R. J., Crack deflection in functionally graded materials, International Journal of Solids and Structures, 34, 3085-3098, (1997) · Zbl 0939.74591
[22] Guo, L. C.; Noda, N., Modeling method for a crack problem of functionally graded materials with arbitrary properties—piecewise-exponential model, International Journal of Solids and Structures, 44, 21, 6768-6790, (2007) · Zbl 1166.74414
[23] Hosseini, M.; Bahaadini, R., Size dependent stability analysis of cantilever micro-pipes conveying fluid based on modified strain gradient theory, International Journal of Engineering Science, 101, 1-13, (2016)
[24] Jin, Z. H.; Batra, R. C., Stresses intensity relaxation at the tip of an edge crack in a functionally graded material subjected to a thermal shock, Journal of Thermal Stresses, 19, 317-339, (1996)
[25] Jin, Z. H.; Noda, N., Crack tip singular fields in nonhomogeneous materials, ASME Journal of Applied Mechanics, 61, 738-740, (1994) · Zbl 0825.73567
[26] Jomehzadeh, E.; Noori, H. R.; Saidi, A. R., The size-dependent vibration analysis of micro-plates based on a modified couple stress theory, Physica E, 43, 4, 877-883, (2011)
[27] Jung, W. Y.; Han, S. C.; Park, W. T., A modified couple stress theory for buckling analysis of S-FGM nanoplates embedded in Pasternak elastic medium, Composite Part B: Engineering, 60, 746-756, (2014)
[28] Kachanov, M.; Sevostianov, I., Effective properties of heterogeneous materials, (2013), Springer Science & Business Media
[29] Ke, L. L.; Wang, Y. S., Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory, Composite Structures, 93, 2, 342-350, (2011)
[30] Ke, L. L.; Wang, Y. S.; Yang, J.; Kitipornchai, S., Nonlinear free vibration of size-dependent functionally graded microbeams, International Journal of Engineering Science, 50, 1, 256-267, (2012) · Zbl 1423.74395
[31] Ke, L. L.; Yang, J.; Kitipornchai, S.; Wang, Y. S., Axisymmetric post-buckling analysis of size-dependent functionally graded annular microplates using the physical neutral plane, International Journal of Engineering Science, 81, 66-81, (2014) · Zbl 1423.74342
[32] Kong, S. L.; Zhou, S. J.; Nie, Z. F.; Wang, K., The size-dependent natural frequency of Bernoulli-Euler micro-beams, International Journal of Engineering Science, 46, 5, 427-437, (2008) · Zbl 1213.74189
[33] Lam, D. C.C.; Yang, F.; Chong, A. C.M.; Wang, J.; Tong, P., Experiments and theory in strain gradient elasticity, Journal of Mechanics and Physics of Solids, 51, 8, 1477-1508, (2003) · Zbl 1077.74517
[34] Lee, Z.; Ophus, C.; Fischer, L. M.; Nelson-Fitzpatrick, N.; Westra, K. L.; Evoy, S.; Radmilovic, V.; Dahmen, U.; Mitlin, D., Metallic NEMS components fabricated from nanocomposite al-mo films, Nanotechnology, 17, 12, 3063-3070, (2006)
[35] Li, H.; Lambros, J.; Cheeseman, B. A.; Santare, M. H., Experimental investigation of the quasi-static fracture of functionally graded materials, International Journal of Solids and Structures, 37, 27, 3715-3732, (2000) · Zbl 0948.74505
[36] Li, X.; Bhushan, B.; Takashima, K.; Baek, C. W.; Kim, Y. K., Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques, Ultramicroscopy, 97, 1-4, 481-494, (2003)
[37] Li, Y. S.; Pan, E., Static bending and free vibration of a functionally graded piezoelectric microplate based on the modified couple-stress theory, International Journal of Engineering Science, 97, 40-59, (2015) · Zbl 1423.74401
[38] Ma, H. M.; Gao, X.; Reddy, J., A microstructure-dependent Timoshenko beam model based on a modified couple stress theory, Journal of the Mechanics and Physics of Solids, 56, 12, 3379-3391, (2008) · Zbl 1171.74367
[39] Ma, H. M.; Gao, X. L.; Reddy, J. N., A non-classical Mindlin plate model based on a modified couple stress theory, Acta Mechanica, 220, 1, 217-235, (2011) · Zbl 1237.74133
[40] Ma, Q.; Clarke, D. R., Size dependent hardness of silver single crystals, Journal of Materials Research, 10, 4, 853-863, (1995)
[41] McFarland, A. W.; Colton, J. S., Role of material microstructure in plate stiffness with relevance to microcantilever sensors, Journal of Micromechanics and Microengineering, 15, 5, 1060-1067, (2005)
[42] Mindlin, R. D.; Tiersten, H. F., Effects of couple-stresses in linear elasticity, Archive for Rational Mechanics and Analysis, 11, 1, 415-448, (1962) · Zbl 0112.38906
[43] Mohammad Abadi, M.; Daneshmehr, A. R., An investigation of modified couple stress theory in buckling analysis of micro composite laminated Euler-Bernoulli and Timoshenko beams, International Journal of Engineering Science, 75, 40-53, (2014) · Zbl 1423.74346
[44] Mojahedi, M.; Rahaeifard, M., A size-dependent model for coupled 3D deformations of nonlinear microbridges, International Journal of Engineering Science, 100, 171-182, (2016) · Zbl 1423.74504
[45] Pagano, N. J., Exact solutions for composites in cylindrical bending, Journal of Composite Materials, 3, 3, 398-411, (1969)
[46] Pagano, N. J., Exact solutions for rectangular bidirectional composites and sandwich plates, Journal of Composite Materials, 4, 1, 20-34, (1970)
[47] Pan, E., Exact solution for functionally graded anisotropic elastic composite laminates, Journal of Composite Materials, 37, 21, 1903-1920, (2003)
[48] Pan, E.; Han, F., Exact solution for functionally graded and layered magneto-electro-elastic plates, International Journal of Engineering Science, 43, 3, 321-339, (2005)
[49] Park, S. K.; Gao, X. L., Bernoulli-Euler beam model based on a modified couple stress theory, Journal of Micromechanics and Microengineering, 16, 11, 2355-2359, (2006)
[50] Park, S. K.; Gao, X. L., Variational formulation of a modified couple stress theory and its application to a simple shear problem, Zeitschrift für angewandte Mathematik und Physik ZAMP, 59, 5, 904-917, (2008) · Zbl 1157.74014
[51] Pei, J.; Tian, F.; Thundat, T., Glucose biosensor based on the microcantilever, Analytical Chemistry, 76, 2, 292-297, (2004)
[52] Reddy, J. N., Microstructure-dependent couple stress theories of functionally graded beams, Journal of the Mechanics and Physics of Solids, 59, 11, 2382-2399, (2011) · Zbl 1270.74114
[53] Roque, C. M..; Fidalgo, D. S.; Ferreira, A. J.M.; Reddy, J. N., A study of a microstructure-dependent composite laminated Timoshenko beam using a modified couple stress theory and a meshless method, Composite Structures, 96, 532-537, (2013)
[54] Roque, C. M.C.; Ferreira, A. J.M.; Reddy, J. N., Analysis of Mindlin micro plates with a modified couple stress theory and a meshless method, Applied Mathematical Modelling, 37, 7, 4626-4633, (2013) · Zbl 1426.74189
[55] Rousseau, C. E.; Chalivendra, V. B.; Tippur, H. V.; Shukla, A., Experimental fracture mechanics of functionally graded materials: an overview of optical investigations, Experimental Mechanics, 50, 7, 845-865, (2010)
[56] Shaat, M.; Mahmoud, F. F.; Gao, X. L.; Faheem, A. F., Size-dependent bending analysis of Kirchhoff nano-plates based on a modified couple-stress theory including surface effects, International Journal of Mechanical Sciences, 79, 31-37, (2014)
[57] Shafiei, N.; Kazemi, M.; Ghadiri, M., On size-dependent vibration of rotary axially functionally graded microbeam, International Journal of Engineering Science, 101, 29-44, (2016)
[58] Stölken, J. S.; Evans, A. G., A microbend test method for measuring the plasticity length scale, Acta Materialia, 46, 14, 5109-5115, (1998)
[59] Taati, E., Analytical solutions for the size dependent buckling and postbuckling behavior of functionally graded micro-plates, International Journal of Engineering Science, 100, 45-60, (2016) · Zbl 1423.74354
[60] Thai, H. T.; Thuc, P. V., A size-dependent functionally graded sinusoidal plate model based on a modified couple stress theory, Composite Structures, 96, 376-383, (2013)
[61] Toupin, R. A., Elastic materials with couple-stresses, Archive for Rational Mechanics and Analysis, 11, 1, 385-414, (1962) · Zbl 0112.16805
[62] Tsiatas, G. C., A new Kirchhoff plate model based on a modified couple stress theory, International Journal of Solids and Structures, 46, 13, 2757-2764, (2009) · Zbl 1167.74489
[63] Wang, B. L.; Zhou, S. J.; Zhao, J. F.; Chen, X., A size-dependent Kirchhoff micro-plate model based on strain gradient elasticity theory, European Journal of Mechanics A/Solids, 30, 4, 517-524, (2011) · Zbl 1278.74103
[64] Wang, R.; Pan, E., Three-dimensional modeling of functionally graded multiferroic composites, Mechanics of Advanced Materials and Structures, 18, 68-76, (2011)
[65] Witvrouw, A.; Mehta, A., The use of functionally graded poly-sige layers for MEMS applications, Materials Science Forum, 492-493, 255-260, (2005)
[66] Xia, W.; Wang, L.; Yin, L., Nonlinear non-classical microscale beams: static bending, postbuckling and free vibration, International Journal of Engineering Science, 48, 12, 2044-2053, (2010) · Zbl 1231.74277
[67] Yang, F.; Chong, A. C.M.; Lam, D. C.C.; Tong, P., Couple stress based strain gradient theory for elasticity, International Journal of Solids and Structures, 39, 10, 2731-2743, (2002) · Zbl 1037.74006
[68] Yung, Y. Y.; Munz, D., Stress analysis in a two materials joint with a functionally graded material, (Shiota, T.; Miyamoto, M. Y., Functionally graded materials, (1996)), 41-46
[69] Zhang, C.; Waksmanski, N.; Wheeler, V. M.; Pan, E.; Larsen, R. E., The effect of photodegradation on effective properties of polymeric thin films: A micromechanical homogenization approach, International Journal of Engineering Science, 94, 1-22, (2015) · Zbl 1423.74807
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.