×

Soliton solutions in two-dimensional Lorentz-violating higher derivative scalar theory. (English) Zbl 1398.35188

Summary: This paper shows a new approach to obtain analytical topological defects of a \(2D\) Myers-Pospelov Lagrangian for two scalar fields. Such a Lagrangian presents higher-order kinetic terms, which lead us to equations of motion which are non-trivial to be integrated. Here we describe three possible scenarios for the equations of motion, named by timelike, spacelike and lightlike respectively. We started our investigation with a kink-like traveling wave Ansatz for the free theory, which led us to constraints for the dispersion relations of each scenario. We also introduced a procedure to obtain analytical solutions for the general theory in the three mentioned scenarios. We exemplified the procedure and discussed the behavior of the defect solutions carefully. It is remarkable that the methodology presented in this study led to analytical models, despite the complexity of the equations of motion derived from the 2D Myers-Pospelov Lagrangian. The methodology here tailored can be applied to several Lagrangians with higher-order derivative terms.

MSC:

35Q40 PDEs in connection with quantum mechanics
35C08 Soliton solutions
35C07 Traveling wave solutions

References:

[1] Myers, R. C.; Pospelov, M., Phys. Rev. Lett., 90, (2003)
[2] Reyes, C. M.; Urrutia, L. F.; Vergara, J. D., Phys. Rev. D, 78, (2008)
[3] Mart Reyes, C., Phys. Rev. D, 82, (2010)
[4] Scatena, Eslley; Turcati, Rodrigo, Phys. Rev. D, 90, (2014)
[5] Campanelli, Leonardo, Phys. Rev. D, 90, (2014)
[6] Maccione, L.; Liberati, S.; Sigl, G., Phys. Rev. Lett., 105, (2010)
[7] Gubitosi, G.; Genovese, G.; Amelino-Camelia, G.; Melchiorri, A., Phys. Rev. D, 82, (2010)
[8] Saveliev, A.; Maccione, L.; Sigl, G., J. Cosmol. Astropart. Phys., 046, 1103, (2011)
[9] Noordmans, J. P.; de Vries, J.; Timmermans, R. G.E., Phys. Rev. C, 94, (2016)
[10] Laurent, P.; Gotz, D.; Binetruy, P.; Covino, S.; Fernandez-Soto, A., Phys. Rev. D, 83, (2011)
[11] Passos, E.; Abreu, E. M.C.; Anacleto, M.; Brito, F. A.; Watzasek, C.; Zarro, C. A.D., Phys. Rev. D, 93, (2016)
[12] Brito, F. A.; Guimaraes, M. S.; Passos, E.; Sampaio, P.; Wotzasek, C., Phys. Rev. D, 86, (2012)
[13] Bazeia, D.; Ferreira Jr, M. M.; Gomes, A. R.; Menezes, R., Physica D, 239, 942, (2010) · Zbl 1189.37075
[14] de Souza Dutra, A.; Correa, R. A.C., Phys. Rev. D, 83, (2011)
[15] Bazeia, D.; Nascimento, J. R.S.; Ribeiro, R. F.; Toledo, D., J. Phys. A: Math. Gen., 30, 8157, (1997) · Zbl 0933.37069
[16] Burgers, J. M., Adv. Appl. Mech., 1, 171, (1948)
[17] Burgers, J. M., The nonlinear diffusion equation, (1974), Reidel Boston · Zbl 0302.60048
[18] D. Bazeia, Chiral Solutions to Generalized Burgers and Burgers-Huxley Equations, arXiv:solv-int/9802007; D. Bazeia, Chiral Solutions to Generalized Burgers and Burgers-Huxley Equations, arXiv:solv-int/9802007
[19] Barreto, M. N.; Bazeia, D.; Menezes, R., Phys. Rev. D, 73, (2006)
[20] Bazeia, D.; Freire, W.; Losano, L.; Ribeiro, R. F., Modern Phys. Lett. A, 17, 1945, (2002) · Zbl 1083.81510
[21] Rego-Monteiro, M. A.; Nobre, F. D., J. Math. Phys., 54, (2013) · Zbl 1296.35178
[22] de Souza Dutra, A., Phys. Lett. B, 626, 249, (2005) · Zbl 1247.82087
[23] Mart Reyes, C., Phys. Rev. D, 87, (2013)
[24] Podolsky, B., Phys. Rev., 62, 68, (1942)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.