×

The effects of spatial inhomogeneities on flow through the endothelial surface layer. (English) Zbl 1398.92057

Summary: Flow through the endothelial surface layer (the glycocalyx and adsorbed plasma proteins) plays an important but poorly understood role in cell signaling through a process known as mechanotransduction. Characterizing the flow rates and shear stresses throughout this layer is critical for understanding how flow-induced ionic currents, deformations of transmembrane proteins, and the convection of extracellular molecules signal biochemical events within the cell, including cytoskeletal rearrangements, gene activation, and the release of vasodilators. Previous mathematical models of flow through the endothelial surface layer are based upon the assumptions that the layer is of constant hydraulic permeability and constant height. These models also assume that the layer is continuous across the endothelium and that the layer extends into only a small portion of the vessel lumen. Results of these models predict that fluid shear stress is dissipated through the surface layer and is thus negligible near endothelial cell membranes. In this paper, such assumptions are removed, and the resultant flow rates and shear stresses through the layer are described. The endothelial surface layer is modeled as clumps of a Brinkman medium immersed in a Newtonian fluid. The width and spacing of each clump, hydraulic permeability, and fraction of the vessel lumen occupied by the layer are varied. The two-dimensional Navier-Stokes equations with an additional Brinkman resistance term are solved using a projection method. Several fluid shear stress transitions in which the stress at the membrane shifts from low to high values are described. These transitions could be significant to cell signaling since the endothelial surface layer is likely dynamic in its composition, density, and height.

MSC:

92C35 Physiological flow
76Z05 Physiological flows
76F10 Shear flows and turbulence
92C10 Biomechanics
Full Text: DOI

References:

[1] Arisaka, T.; Mitsumata, M.; Kowasumi, M.; Tohjima, T.; Hirose, S.; Yoshida, Y., Effects of shear stress on glycosaminoglycan synthesis in vascular endothelial cells, Ann. NY acad. sci., 748, 543-554, (1995)
[2] Barker, A.; Konopatskaya, O.; Neal, C.; Macpherson, J.; Whatmore, J.; Winlove, C.; Unwin, P.; Shore, A., Observation and characterisation of the glycocalyx of viable human endothelial cells using confocal laser scanning microscopy, Phys. chem. chem. phys., 6, 1006-1011, (2004)
[3] Beis, D.; Bartman, T.; Jin, S.; Scott, I.; D’Amico, L.; Ober, E.; Verkade, H.; Frantsve, J.; Field, H.; Wehman, A.; Baier, H.; Tallafuss, A.; Bally-Cuif, L.; Chen, J.; Stainier, D.; Jungblut, B., Genetic and cellular analyses of zebrafish atrioventricular cushion and valve development, Development, 132, 18, 4193-4204, (2005)
[4] Bell, J.B.; Colella, P.; Glaz, H.M., A second-order projection method for the incompressible navier – stokes equations, J. comput. phys., 85, 257-283, (1989) · Zbl 0681.76030
[5] Bennett, S., Morphological aspects of extracellular polysaccharides, J. histochem. cytochem., 11, 14-23, (1963)
[6] Brown, D.L.; Cortez, R.; Minion, M.L., Accurate projection methods for the incompressible navier – stokes equations, J. comput. phys., 168, 464-499, (2001) · Zbl 1153.76339
[7] Caro, C.; Pedley, T.; Seed, W., Mechanics of the circulation. cardiovascular physiology, (1974), Medical and Technical Publishers London
[8] Chorin, A., Numerical solutions of the navier – stokes equations, Math. comput., 22, 745-762, (1968) · Zbl 0198.50103
[9] Chorin, A., On the convergence of discrete approximations to the navier – stokes equations, Math. comput., 23, 341-353, (1969) · Zbl 0184.20103
[10] Constantinescu, A.; Vink, H.; Spaan, J., Endothelial cell glycocalyx modulates immobilization of leukocytes at the endothelial surface, Arterioscler. thromb. vasc. biol., 23, 1541-1547, (2003)
[11] Damiano, E., The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries, Microvasc. res., 55, 77-91, (1998)
[12] Damiano, E.; Stace, T., A mechano-electrochemical model of radial deformation of the capillary glycocalyx, Biophys. J., 82, 3, 1153-1175, (2002)
[13] Davies, P., Flow-mediated endothelial mechanotransduction, Physiol. rev., 75, 3, (1995)
[14] Dull, R.; Davies, P., Flow modulation of agonist (atp)-response \((\operatorname{Ca}^{2 +})\) coupling in vascular endothelial cells, Am. J. physiol., 261, 1 pt 2, H149-H154, (1991)
[15] Feng, J.; Weinbaum, S., Lubrication theory in highly compressible porous media: the mechanics of skiing, from red cells to humans, J. fluid mech., 422, 281-317, (2000) · Zbl 0988.76022
[16] Florian, J.; Kosky, J.; Ainslie, K.; Pang, Z.; Dull, R.; Tarbell, J., Heparan sulfate proteoglycan is mechanosensor on endothelial cells, Circ. res., 93, e135-e142, (2003)
[17] Freitas, R.J., Nanomedicine, volume I: basic capabilities, (1999), Landes Bioscience Georgetown, TX
[18] Gouverneur, M.; Spaan, J.; Pannekoek, H.; Fontihn, R.; Vink, H., Fluid shear stress stimulates incorporation of hyaluronan into endothelial cell glycocalyx, Am. J. physiol. heart circ. physiol., 290, H458-H462, (2006)
[19] Gouverneur, M.; Van Den Berg, B.; Nieuwdorp, M.; Stroes, E.; Vink, H., Vasculoprotective properties of the endothelial glyocalyx: effects of fluid shear stress, J. intern. med., 259, 393-400, (2006)
[20] Henry, C.; Duling, B., Permeation of the luminal capillary glycocalyx is determined by hyaluronan, Am. J. physiol. heart circ. physiol., 277, H508-H514, (1999)
[21] Hove, J.; Koster, R.; Forouhar, A.; Acevedo-Bolton, G.; Fraser, S.; Gharib, M., Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis, Nature, 421, 6919, 172-177, (2003)
[22] Hu, X.; Weinbaum, S., A new view of Starling’s hypothesis at the microstructural level, Microvas. res., 58, 281-304, (1999)
[23] Manasek, F., Macromolecules of the extracellular compartment of embryonic and mature hearts, Circ. res., 38, 331-337, (1976)
[24] Megens, R.; Reitsma, S.; Schiffers, P.; Hilgers, R.; De Mey, J.; Slaaf, D.; Oude Egbrink, M.; van Zandvoort, M., Two-photon microscopy of vital murine elastic and muscular arteries. combined structural and functional imaging with subcellular resolution, J. vasc. res., 44, 2, 87-98, (2007)
[25] Michel, C.; Curry, F., Microvascular permeability, Physiol. rev., 79, 3, 703-761, (1999)
[26] Mochizuki, S.; Vink, H.; Hiramatsu, O.; Kajita, T.; Shigeto, F.; Spaan, J.; Kajiya, F., Role of hyaluronic acid glycocsaminoglycans in shear-induced edothelium-derived nitric oxide release, Am. J. physiol. heart circ. physiol., 285, H722-H726, (2003)
[27] Mokady, A.; Mestel, A.; Winlove, C.P., Flow through a charged biopolymer layer, J. fluid mech., 383, 353-378, (1999) · Zbl 0930.76100
[28] Mulivor, A.; Liposky, H., Role of glycocalyx in leukocyte-endothelial cell adhesion, Am. J. physiol. heart circ. physiol., 283, H1282-H1291, (2002)
[29] Oleson, S.; Clapham, D.; Davies, P., Haemodynamic shear stress activates a \(\operatorname{k}^+\) current in vascular endothelial cells, Nature, 331, 168-170, (1988)
[30] Person, A.; Klewer, S.; Runyan, R., Cell biology of cardiac cushion development, Int. rev. cytol., 243, 287-335, (2005)
[31] Peskin, C.S., Numerical analysis of blood flow in the heart, J. comput. phys., 25, 220-252, (1977) · Zbl 0403.76100
[32] Peyret, R.; Taylor, T.D., Computational methods for fluid flow, (1986), Springer New York
[33] Platts, S.; Linden, J.; Duling, B., Rapid modification of the glycocalyx caused by ischemia-repurfusion is inhibited by adenosine \(a_{2 A}\) receptor activation, Am. J. physiol. heart circ. physiol., 284, H2360-H2367, (2003)
[34] Pries, A.; Secomb, T.; Jacobs, H.; Sperandio, M.; Osterloh, K.; Gaehtgens, P., Microvascular blood flow resistance: role of endothelial surface layer, Am. J. physiol. heart. circ. physiol., 273, H2272-H2279, (1997)
[35] Reitsma, S.; Slaaf, D.; Vink, H.; van Zandvoort, M.; Oude Egbrink, M., The endothelial glycocalyx: composition, functions and visualization, Pflugers arch.—eur. J. physiol., 454, 345-359, (2007)
[36] Sangani, A.; Acrivos, A., Slow flow past periodic arrays of cylinders with application to heat transfer, Int. J. multiphase flow, 8, 193-206, (1982) · Zbl 0487.76048
[37] Secomb, T.; Hsu, R.; Pries, A., A model for red blood cell motion in glycocalyx-lined capillaries, Am. J. physiol. heart circ. physiol., 274, H1016-H1022, (1998)
[38] Secomb, T.; Hsu, R.; Pries, A., Effect of the endothelial surface layer on transmission of fluid shear stress to endothelial cells, J. biorheol., 38, 143-150, (2001)
[39] Secomb, T.; Hsu, R.; Pries, A., Motion of red blood cells in a capillary with an endothelial surface layer: effect of flow velocity, Am. J. physiol. heart circ. physiol., 281, H629-H636, (2001)
[40] Smith, M.; Long, D.; Damiano, E.; Ley, K., Near-wall micro-PIV reveals a hydrodynamically relevant endothelial surface layer in venules in vivo, Biophys. J., 85, 637-645, (2003)
[41] Squire, J.; Chew, M.; Nnehi, G.; Neal, C.; Barry, J.; Michel, C., Quasi-periodic substructure in the microvessel endothelial glycocalyx: a possible explanation for molecular filtering?, J. struct. biol., 136, 239-255, (2001)
[42] Stevens, A.; Hlady, V.; Dull, R., Fluorescence correlation spectroscopy can probe albumin dynamics inside lung endothelial glycocalyx, Am. J. physiol. lung cell mol. physiol., 293, L328-L335, (2007)
[43] Thi, M.; Tarbell, J.; Weinbaum, S.; Spray, D., The role of the glycocalyx in reorganization of the actin cytoskeleton under fluid shear stress: a bumper car model, Proc. natl. acad. sci. USA, 101, 47, 16483-16488, (2004)
[44] van Haaren, P.; VanBavel, E.; Vink, H.; Spaan, J., Localization of the permeability barrier to solutes in isolated arteries by confocal microscopy, Am. J. physiol. heart circ. physiol., 285, H2848-H2856, (2003)
[45] Vink, H.; Duling, B., Identification of distinct luminal domain for macromolecules, erythrocytes and leukocytes within Mammalian capillaries, Circ. res., 79, 581-589, (1996)
[46] Vink, H.; Constantinescu, A.; Spaan, J., Oxidized lipoproteins degrade the endothelial surface layer: implications for platelet-endothelial cell adhesion, Circulation, 101, 1500-1502, (2000)
[47] Weinbaum, S.; Zhang, X.; Han, Y.; Vink, H.; Cowan, S., Mechanotransduction and flow across the endothelial glycocalyx, Proc. natl. acad. sci., 100, 13, (2003)
[48] Yao, Y.; Rabodzey, A.; Dewey, C., Glycocalyx modulates the motility and proliferative response of vascular endothelium to fluid shear stress, Am. J. physiol. heart circ. physiol., 293, H1023-H1030, (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.