×

From electrodiffusion theory to the electrohydrodynamics of leaky dielectrics through the weak electrolyte limit. (English) Zbl 1415.76760

J. Fluid Mech. 855, 67-130 (2018); corrigendum ibid. 962, Paper No. E1, 3 p. (2023).
Summary: The Taylor-Melcher (TM) model is the standard model for describing the dynamics of poorly conducting leaky dielectric fluids under an electric field. The TM model treats the fluids as ohmic conductors, without modelling the underlying ion dynamics. On the other hand, electrodiffusion models, which have been successful in describing electrokinetic phenomena, incorporate ionic concentration dynamics. Mathematical reconciliation of the electrodiffusion picture and the TM model has been a major issue for electrohydrodynamic theory. Here, we derive the TM model from an electrodiffusion model in which we explicitly model the electrochemistry of ion dissociation. We introduce salt dissociation reaction terms in the bulk electrodiffusion equations and take the limit in which the salt dissociation is weak; the assumption of weak dissociation corresponds to the fact that the TM model describes poor conductors. Together with the assumption that the Debye length is small, we derive the TM model with or without the surface charge convection term depending upon the scaling of relevant dimensionless parameters. An important quantity that emerges is the Galvani potential (GP), the jump in voltage across the liquid-liquid interface between the two leaky dielectric media; the GP arises as a natural consequence of the interfacial boundary conditions for the ionic concentrations, and is absent under certain parametric conditions. When the GP is absent, we recover the TM model. Our analysis also reveals the structure of the Debye layer at the liquid-liquid interface, which suggests how interfacial singularities may arise under strong imposed electric fields. In the presence of a non-zero GP, our model predicts that the liquid droplet will drift under an imposed electric field, the velocity of which is computed explicitly to leading order.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics

Software:

DLMF

References:

[1] Aris, R., Vectors, Tensors and the Basic Equations of Fluid Mechanics, (1990), Dover
[2] Baygents, J. C.; Saville, D. A., The circulation produced in a drop by an electric field: a high field strength electrokinetic model, AIP Conference Proceedings, 197, 7-17, (1990), AIP · doi:10.1063/1.38956
[3] Baygents, J. C.; Saville, D. A., Electrophoresis of drops and bubbles, J. Chem. Soc. Faraday Trans., 87, 12, 1883-1898, (1991) · doi:10.1039/ft9918701883
[4] Bazant, M. Z., Electrokinetics meets electrohydrodynamics, J. Fluid Mech., 782, 1-4, (2015) · Zbl 1381.76395 · doi:10.1017/jfm.2015.416
[5] Bazant, M. Z.; Kilic, M. S.; Storey, B. D.; Ajdari, A., Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions, Adv. Colloid Interface Sci., 152, 1, 48-88, (2009) · doi:10.1016/j.cis.2009.10.001
[6] Berry, J. D.; Davidson, M. R.; Harvie, D. J. E., A multiphase electrokinetic flow model for electrolytes with liquid/liquid interfaces, J. Comput. Phys., 251, 209-222, (2013) · Zbl 1349.76432 · doi:10.1016/j.jcp.2013.05.026
[7] Booth, F., The cataphoresis of spherical fluid droplets in electrolytes, J. Chem. Phys., 19, 11, 1331-1336, (1951) · doi:10.1063/1.1748053
[8] Brosseau, Q.; Vlahovska, P. M., Streaming from the equator of a drop in an external electric field, Phys. Rev. Lett., 119, 3, (2017) · doi:10.1103/PhysRevLett.119.034501
[9] Bruus, H., Theoretical Microfluidics, (2007), Oxford University Press
[10] Chang, H.-C.; Yeo, L. Y., Electrokinetically Driven Microfluidics and Nanofluidics, (2010), Cambridge University Press
[11] Chen, C.-H.; Ramos, A., Electrohydrodynamic stability, Electrokinetics and Electrohydrodynamics in Microsystems, 177-220, (2011), Springer-Verlag · doi:10.1007/978-3-7091-0900-7_6
[12] Chen, C.-H.; Lin, H.; Lele, S. K.; Santiago, J. G., Convective and absolute electrokinetic instability with conductivity gradients, J. Fluid Mech., 524, 263-303, (2005) · Zbl 1065.76545 · doi:10.1017/S0022112004002381
[13] Das, D.; Saintillan, D., Electrohydrodynamics of viscous drops in strong electric fields: numerical simulations, J. Fluid Mech., 829, 127-152, (2017) · Zbl 1460.76923 · doi:10.1017/jfm.2017.560
[14] Das, D.; Saintillan, D., A nonlinear small-deformation theory for transient droplet electrohydrodynamics, J. Fluid Mech., 810, 225-253, (2017) · Zbl 1383.76541 · doi:10.1017/jfm.2016.704
[15] Delgado, Á. V., Interfacial Electrokinetics and Electrophoresis, 106, (2001), CRC Press · doi:10.1201/9781482294668
[16] Feng, J. Q.; Scott, T. C., A computational analysis of electrohydrodynamics of a leaky dielectric drop in an electric field, J. Fluid Mech., 311, 289-326, (1996) · Zbl 0864.76096 · doi:10.1017/S0022112096002601
[17] Girault, H. H. J.; Schiffrin, D. J., Electrochemistry of liquid-liquid interfaces, Electroanalyt. Chem., 15, 1-141, (1989)
[18] He, H.; Salipante, P. F.; Vlahovska, P. M., Electrorotation of a viscous droplet in a uniform direct current electric field, Phys. Fluids, 25, 3, (2013) · doi:10.1063/1.4795021
[19] Hu, W.-F.; Lai, M.-C.; Young, Y.-N., A hybrid immersed boundary and immersed interface method for electrohydrodynamic simulations, J. Comput. Phys., 282, 47-61, (2015) · Zbl 1351.76165 · doi:10.1016/j.jcp.2014.11.005
[20] Hung, L. Q., Electrochemical properties of the interface between two immiscible electrolyte solutions. Part i. Equilibrium situation and galvani potential difference, J. Electroanalyt. Chem. Interfacial Electrochemistry, 115, 2, 159-174, (1980) · doi:10.1016/S0022-0728(80)80323-8
[21] Lanauze, J. A.; Walker, L. M.; Khair, A. S., Nonlinear electrohydrodynamics of slightly deformed oblate drops, J. Fluid Mech., 774, 245-266, (2015) · doi:10.1017/jfm.2015.264
[22] Leal, L. G., Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes, (2007), Cambridge University Press · Zbl 1133.76001 · doi:10.1017/CBO9780511800245
[23] López-Herrera, J. M.; Popinet, S.; Herrada, M. A., A charge-conservative approach for simulating electrohydrodynamic two-phase flows using volume-of-fluid, J. Comput. Phys., 230, 5, 1939-1955, (2011) · Zbl 1391.76427 · doi:10.1016/j.jcp.2010.11.042
[24] Melcher, J. R.; Taylor, G. I., Electrohydrodynamics: a review of the role of interfacial shear stresses, Annu. Rev. Fluid Mech., 1, 111-147, (1969) · doi:10.1146/annurev.fl.01.010169.000551
[25] De La Mora, J. F., The fluid dynamics of taylor cones, Annu. Rev. Fluid Mech., 39, 217-243, (2007) · Zbl 1296.76183 · doi:10.1146/annurev.fluid.39.050905.110159
[26] Mori, Y.; Liu, C.; Eisenberg, R. S., A model of electrodiffusion and osmotic water flow and its energetic structures, Physica D, 240, 1835-1852, (2011) · Zbl 1227.92007
[27] Olver, F. W. J., NIST Handbook of Mathematical Functions Hardback and CD-ROM, (2010), Cambridge University Press · Zbl 1198.00002
[28] Pascall, A. J.; Squires, T. M., Electrokinetics at liquid/liquid interfaces, J. Fluid Mech., 684, 163-191, (2011) · Zbl 1241.76458 · doi:10.1017/jfm.2011.288
[29] Reymond, F.; Fermın, D.; Lee, H. J.; Girault, H. H., Electrochemistry at liquid/liquid interfaces: methodology and potential applications, Electrochim. Acta, 45, 15, 2647-2662, (2000) · doi:10.1016/S0013-4686(00)00343-1
[30] Roberts, S. A.; Kumar, S., Ac electrohydrodynamic instabilities in thin liquid films, J. Fluid Mech., 631, 255-279, (2009) · Zbl 1181.76074 · doi:10.1017/S0022112009006843
[31] Roberts, S. A.; Kumar, S., Electrohydrodynamic instabilities in thin liquid trilayer films, Phys. Fluids, 22, 12, (2010) · doi:10.1063/1.3520134
[32] Rubinstein, I., Electro-Diffusion of Ions, (1990), SIAM · doi:10.1137/1.9781611970814
[33] Salipante, P. F.; Vlahovska, P. M., Electrohydrodynamics of drops in strong uniform dc electric fields, Phys. Fluids, 22, 11, (2010) · doi:10.1063/1.3507919
[34] Salipante, P. F.; Vlahovska, P. M., Electrohydrodynamic rotations of a viscous droplet, Phys. Rev. E, 88, 4, (2013)
[35] Saville, D. A., Electrokinetic effects with small particles, Annu. Rev. Fluid Mech., 9, 1, 321-337, (1977) · Zbl 0396.76079 · doi:10.1146/annurev.fl.09.010177.001541
[36] Saville, D. A., Electrohydrodynamics: the Taylor-Melcher leaky dielectric model, Annu. Rev. Fluid Mech., 29, 27-64, (1997) · doi:10.1146/annurev.fluid.29.1.27
[37] Schnitzer, O.; Yariv, E., The Taylor-Melcher leaky dielectric model as a macroscale electrokinetic description, J. Fluid Mech., 773, 1-33, (2015) · Zbl 1331.76133 · doi:10.1017/jfm.2015.242
[38] Sengupta, R.; Walker, L. M.; Khair, A. S., The role of surface charge convection in the electrohydrodynamics and breakup of prolate drops, J. Fluid Mech., 833, 29-53, (2017) · Zbl 1419.76715 · doi:10.1017/jfm.2017.628
[39] Squires, T. M.; Bazant, M. Z., Induced-charge electro-osmosis, J. Fluid Mech., 509, 217-252, (2004) · Zbl 1093.76065 · doi:10.1017/S0022112004009309
[40] Steel, B. J.; Stokes, J. M.; Stokes, R. H., Individual ion mobilities in mixtures of non-electrolytes and water, J. Phys. Chem., 62, 12, 1514-1516, (1958) · doi:10.1021/j150570a011
[41] Taylor, G., Studies in electrohydrodynamics. i. The circulation produced in a drop by electrical field, Proc. R. Soc. Lond. A, 291, 1425, 159-166, (1966) · doi:10.1098/rspa.1966.0086
[42] Tomar, G.; Gerlach, D.; Biswas, G.; Alleborn, N.; Sharma, A.; Durst, F.; Welch, S. W. J.; Delgado, A., Two-phase electrohydrodynamic simulations using a volume-of-fluid approach, J. Comput. Phys., 227, 2, 1267-1285, (2007) · Zbl 1126.76044 · doi:10.1016/j.jcp.2007.09.003
[43] Vizika, O.; Saville, D. A., The electrohydrodynamic deformation of drops suspended in liquids in steady and oscillatory electric fields, J. Fluid Mech., 239, 1-21, (1992) · doi:10.1017/S0022112092004294
[44] Vlahovska, P. M., Electrohydrodynamic instabilities of viscous drops, Phys. Rev. Fluids, 1, 6, (2016) · doi:10.1103/PhysRevFluids.1.060504
[45] Xu, X.; Homsy, G. M., The settling velocity and shape distortion of drops in a uniform electric field, J. Fluid Mech., 564, 395-414, (2006) · Zbl 1178.76388 · doi:10.1017/S0022112006001480
[46] Zholkovskij, E. K.; Masliyah, J. H.; Czarnecki, J., An electrokinetic model of drop deformation in an electric field, J. Fluid Mech., 472, 1-27, (2002) · Zbl 1163.76453 · doi:10.1017/S0022112002001441
[47] Zhou, S.; Wang, Z.; Li, B., Mean-field description of ionic size effects with nonuniform ionic sizes: a numerical approach, Phys. Rev. E, 84, 2, (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.