×

Modal analysis of the wake past a marine propeller. (English) Zbl 1415.76196

Summary: Modal decomposition techniques are used to analyse the wake field past a marine propeller achieved by previous numerical simulations [R. Muscari et al., Comput. Fluids 73, 65–79 (2013; Zbl 1365.76094)]. In particular, proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) are used to identify the most energetic modes and those that play a dominant role in the inception of the destabilization mechanisms. Two different operating conditions, representative of light and high loading conditions, are considered. The analysis shows a strong dependence of temporal and spatial scales of the process on the propeller loading and correlates the spatial shape of the modes and the temporal scales with the evolution and destabilization mechanisms of the wake past the propeller. At light loading condition, due to the stable evolution of the wake, both POD and DMD describe the flow field by the non-interacting evolution of the tip and hub vortex. The flow is mainly associated with the ordered convection of the tip vortex and the corresponding dominant modes, identified by both decompositions, are characterized by spatial wavelengths and frequencies related to the blade passing frequency and its multiples, whereas the dynamic of the hub vortex has a negligible contribution. At high loading condition, POD and DMD identify a marked separation of the flow field close to the propeller and in the far field, as a consequence of wake breakdown. The tonal modes are prevalent only near to the propeller, where the flow is stable; on the contrary, in the transition region a number of spatial and temporal scales appear. In particular, the phenomenon of destabilization of the wake, originated by the coupling of consecutive tip vortices, and the mechanisms of hub-tip vortex interaction and wake meandering are identified by both POD and DMD.

MSC:

76D25 Wakes and jets
76D05 Navier-Stokes equations for incompressible viscous fluids
76U05 General theory of rotating fluids

Citations:

Zbl 1365.76094
Full Text: DOI

References:

[1] Ashton, R.; Viola, F.; Camarri, S.; Gallaire, F.; Iungo, G. V., Hub vortex instability within wind turbine wakes: effects of wind turbulence, loading conditions and blade aerodynamics, Phys. Rev. Fluids, 1, 1-18, (2016) · doi:10.1103/PhysRevFluids.1.073603
[2] Bastine, D.; Vollmer, L.; Wächter, M.; Peinke, J., Stochastic wake modelling based on POD analysis, Energies, 11, 3, 1-29, (2018) · doi:10.3390/en11030612
[3] Berkooz, G.; Holmes, P.; Lumley, J. L., The proper orthogonal decomposition in the analysis of turbulent flows, Annu. Rev. Fluid Mech., 25, 539-575, (1993) · doi:10.1146/annurev.fl.25.010193.002543
[4] Chen, K. K.; Tu, J. H.; Rowley, C. W., Variants of dynamic mode decomposition: boundary condition, Koopman, and Fourier analyses, J. Nonlinear Sci., 22, 6, 887-915, (2012) · Zbl 1259.35009 · doi:10.1007/s00332-012-9130-9
[5] Conlisk, A. T., Modern helicopter rotor aerodynamics, Prog. Aerosp. Sci., 37, 5, 419-476, (2001) · doi:10.1016/S0376-0421(01)00011-2
[6] Debnath, M.; Santoni, C.; Leonardi, S.; Iungo, G. V., Towards reduced order modeling for predicting the dynamics of coherent vorticity structures within wind turbine wake, Phil. Trans. R. Soc. Lond. A, 375, 1-14, (2017) · doi:10.1098/rsta.2016.0108
[7] Di Felice, F.; Di Florio, D.; Felli, M.; Romano, G. P., Experimental investigation of the propeller wake at different loading conditions by particle image velocimetry, J. Ship Res., 48, 2, 168-190, (2004)
[8] Di Mascio, A.; Muscari, R.; Dubbioso, G., On the wake dynamics of a propeller operating in drift, J. Fluid Mech., 754, 263-307, (2014) · doi:10.1017/jfm.2014.390
[9] Felli, M.; Camussi, R.; Di Felice, F., Mechanisms of evolution of the propeller wake in the transition and far fields, J. Fluid Mech., 682, 5-53, (2011) · Zbl 1241.76019 · doi:10.1017/jfm.2011.150
[10] Felli, M.; Di Felice, F., Propeller wake analysis in nonuniform inflow by LDV phase sampling techniques, J. Mar. Sci. Technol., 10, 159-172, (2005) · doi:10.1007/s00773-005-0201-6
[11] Felli, M.; Falchi, M.; Dubbioso, G., Hydrodynamic and hydroacoustic analysis of a marine propeller wake by TOMO-PIV, Proceedings of the Fourth International Symposium on Marine Propulsors (SMP’15), Austin, Texas, USA, (2015), SMP
[12] Freund, J. B.; Colonius, T., Turbulence and sound-field POD analysis of a turbulent jet, Intl J. Aeroacoust., 8, 4, 337-354, (2009) · doi:10.1260/147547209787548903
[13] Grigoropoulos, G.; Campana, E. F.; Diez, M.; Serani, A.; Goren, O.; Sarioz, K.; Danisman, D. B.; Visonneau, M.; Queutey, P.; Abdel-Maksoud, M., Mission-based hull-form and propeller optimization of a transom stern destroyer for best performance in the sea environment, Proceedings of the VII International Congress on Computational Methods in Marine Engineering (MARINE’17), (2017), CIMNE
[14] Gupta, B. P.; Loewy, R. G., Theoretical analysis of the aerodynamic stability of multiple, interdigitated helical vortices, AIAA J., 12, 10, 1381-1387, (1974) · Zbl 0294.76035 · doi:10.2514/3.49493
[15] Holmes, P.; Lumley, J. L.; Berkooz, G.; Rowley, C. W., Turbulence, Coherent Structures, Dynamical Systems and Symmetry, (2012), Cambridge University Press · Zbl 1251.76001 · doi:10.1017/CBO9780511919701
[16] Ianniello, S., The Ffowcs Williams-Hawkings equation for hydroacoustic analysis of rotating blades. Part 1. The rotpole, J. Fluid Mech., 797, 345-388, (2016) · Zbl 1422.76162 · doi:10.1017/jfm.2016.263
[17] Ianniello, S.; Muscari, R.; Di Mascio, A., Ship underwater noise assessment by the acoustic analogy. Part I. Nonlinear analysis of a marine propeller in a uniform flow, J. Mar. Sci. Technol., 18, 547-570, (2013) · doi:10.1007/s00773-013-0227-0
[18] Iungo, G. V.; Santoni-Ortiz, C.; Abkar, M.; Porté-Agel, F.; Rotea, M. A.; Leonardi, S., Data-driven reduced order model for prediction of wind turbine wakes, J. Phys.: Conf. Ser., 625, 1, (2015)
[19] Iungo, G. V.; Viola, F.; Camarri, S.; Porté-Agel, F.; Gallaire, F., Linear stability analysis of wind turbine wakes performed on wind tunnel measurements, J. Fluid Mech., 737, 499-526, (2013) · Zbl 1294.76135 · doi:10.1017/jfm.2013.569
[20] Jeong, J.; Hussain, F., On the identification of a vortex, J. Fluid Mech., 285, 69-94, (1995) · Zbl 0847.76007 · doi:10.1017/S0022112095000462
[21] Jovanović, M. R.; Schmid, P. J.; Nichols, J. W., Sparsity-promoting dynamic mode decomposition, Phys. Fluids, 26, 2, 1-22, (2014)
[22] Kumar, P.; Mahesh, K., Analysis of marine propulsor in crashback using large eddy simulations, Proceedings of the Fourth International Symposium on Marine Propulsors (SMP’15). Austin, Texas, USA, (2015), SMP
[23] Kumar, P.; Mahesh, K., Large eddy simualtion of propeller wake instabilities, J. Fluid Mech., 814, 361-396, (2017) · Zbl 1383.76287 · doi:10.1017/jfm.2017.20
[24] Lumley, J. L., Stochastic Tools in Turbulence, (1970), Academic Press · Zbl 0273.76035
[25] Muld, T. W.; Efraimsson, G.; Henningson, D. S., Mode decomposition on surface-mounted cube, Flow Turbul. Combust., 88, 3, 279-310, (2012) · Zbl 1432.76122 · doi:10.1007/s10494-011-9355-y
[26] Muscari, R.; Di Mascio, A.; Verzicco, R., Modeling of vortex dynamics in the wake of a marine propeller, Comput. Fluids, 73, 65-79, (2013) · Zbl 1365.76094 · doi:10.1016/j.compfluid.2012.12.003
[27] Newland, D. E., An Introduction to Random Vibrations, Spectral and Wavelet Analysis, (1993), Longman · Zbl 0588.70001
[28] Oberleithner, K.; Sieber, M.; Nayeri, C. N.; Paschereit, C. O.; Petz, C.; Hege, H. C.; Noack, B. R.; Wygnanski, I., Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction, J. Fluid Mech., 679, 383-414, (2011) · Zbl 1241.76206 · doi:10.1017/jfm.2011.141
[29] Okulov, V. L., On the stability on multiple helical vortices, J. Fluid Mech., 521, 319-342, (2004) · Zbl 1065.76099 · doi:10.1017/S0022112004001934
[30] Okulov, V. L.; Sørensen, J. N., Stability of helical tip vortices in rotor far wake, J. Fluid Mech., 576, 1-25, (2007) · Zbl 1125.76028 · doi:10.1017/S0022112006004228
[31] Paik, B.; Kim, K.; Lee, J.; Lee, S., Analysis of unstable vortical structure in a propeller wake affected by a simulated hull wake, Exp. Fluids, 48, 6, 1121-1133, (2010) · doi:10.1007/s00348-009-0798-z
[32] Rempfer, D.; Fasel, H. F., Evolution of three-dimensional coherent structures in a flat-plate boundary layer, J. Fluid Mech., 260, 351-375, (1994) · doi:10.1017/S0022112094003551
[33] Roache, P. J., Quantification of uncertainty in computational fluid dynamics, Annu. Rev. Fluid Mech., 29, 123-160, (1997) · doi:10.1146/annurev.fluid.29.1.123
[34] Rowley, C. W.; Dawson, S. T. M., Model reduction for flow analysis and control, Annu. Rev. Fluid Mech., 49, 387-417, (2017) · Zbl 1359.76111 · doi:10.1146/annurev-fluid-010816-060042
[35] Rowley, C. W.; Mezic, I.; Bagheri, S.; Schlatter, P.; Henningson, D. S., Spectral analysis of nonlinear flows, J. Fluid Mech., 641, 115-127, (2009) · Zbl 1183.76833 · doi:10.1017/S0022112009992059
[36] Salvatore, F.; Pereira, F.; Felli, M.; Calcagni, D.; Di Felice, F.
[37] Sarmast, S.; Dadfar, R.; Mikkelsen, R. F.; Schlatter, P.; Ivanelli, S.; Sørensen, J. N.; Henningson, D. S., Mutual inductance instability of the tip vortices behind a wind turbine, J. Fluid Mech., 755, 705-731, (2014) · doi:10.1017/jfm.2014.326
[38] Schmid, P. J., Dynamic mode decomposition of numerical and experimental data, J. Fluid Mech., 656, 5-28, (2010) · Zbl 1197.76091 · doi:10.1017/S0022112010001217
[39] Schmid, P. J.; Violato, D.; Scarano, F., Decomposition of time-resolved tomographic PIV, Exp. Fluids, 52, 1567-1579, (2012) · doi:10.1007/s00348-012-1266-8
[40] Semeraro, O.; Bellani, G.; Lundell, F., Analysis of time-resolved PIV measurements of a confined turbulent jet using POD and Koopman modes, Exp. Fluids, 53, 1203-1220, (2012) · doi:10.1007/s00348-012-1354-9
[41] Sirovich, L., Turbulence and the dynamics of coherent structures. Part I-III, Q. Appl. Maths, 45, 3, 561-590, (1987) · Zbl 0676.76047 · doi:10.1090/qam/910462
[42] Sørensen, J. N., Instability of helical tip vortices in rotor wakes, J. Fluid Mech., 682, 1-4, (2011) · Zbl 1241.76193 · doi:10.1017/jfm.2011.277
[43] Spalart, P. R., Detached eddy simulation, Annu. Rev. Fluid Mech., 41, 181-202, (2009) · Zbl 1159.76036 · doi:10.1146/annurev.fluid.010908.165130
[44] Statnikov, V.; Meinke, M.; Schröder, W., Reduced-order analysis of buffet flow of space launchers, J. Fluid Mech., 815, 1-25, (2017) · Zbl 1383.76401 · doi:10.1017/jfm.2017.46
[45] Vermeer, L. J.; Sørensen, J. N.; Crespo, A., Wind turbine wake aerodynamics, Prog. Aerosp. Sci., 39, 6-7, 467-510, (2003) · doi:10.1016/S0376-0421(03)00078-2
[46] Viola, F.; Iungo, G. V.; Camarri, S.; Porté-Agel, F.; Gallaire, F., Prediction of the hub vortex instability in a wind turbine wake: stability analysis with eddy-viscosity models calibrated on wind tunnel data, J. Fluid Mech., 750, R1, (2014) · doi:10.1017/jfm.2014.263
[47] Widnall, S. E., The stability of a helical vortex filament, J. Fluid Mech., 54, 4, 641-663, (1972) · Zbl 0242.76023 · doi:10.1017/S0022112072000928
[48] Wood, D. H.; Boersma, J., On the motion of multiple helical vortices, J. Fluid Mech., 447, 149-171, (2001) · Zbl 0996.76015 · doi:10.1017/S002211200100578X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.