×

Fluid deformation in random steady three-dimensional flow. (English) Zbl 1415.76605

Summary: The deformation of elementary fluid volumes by velocity gradients is a key process for scalar mixing, chemical reactions and biological processes in flows. Whilst fluid deformation in unsteady, turbulent flow has gained much attention over the past half-century, deformation in steady random flows with complex structure – such as flow through heterogeneous porous media – has received significantly less attention. In contrast to turbulent flow, the steady nature of these flows constrains fluid deformation to be anisotropic with respect to the fluid velocity, with significant implications for e.g. longitudinal and transverse mixing and dispersion. In this study we derive an ab initio coupled continuous-time random walk (CTRW) model of fluid deformation in random steady three-dimensional flow that is based upon a streamline coordinate transform which renders the velocity gradient and fluid deformation tensors upper triangular. We apply this coupled CTRW model to several model flows and find that these exhibit a remarkably simple deformation structure in the streamline coordinate frame, facilitating solution of the stochastic deformation tensor components. These results show that the evolution of longitudinal and transverse fluid deformation for chaotic flows is governed by both the Lyapunov exponent and power-law exponent of the velocity probability distribution function at small velocities, whereas algebraic deformation in non-chaotic flows arises from the intermittency of shear events following similar dynamics as that for steady two-dimensional flow.

MSC:

76S05 Flows in porous media; filtration; seepage
76F25 Turbulent transport, mixing

References:

[1] Adachi, K., Calculation of strain histories in Protean coordinate systems, Rheol. Acta, 22, 4, 326-335, (1983) · Zbl 0542.76012 · doi:10.1007/BF01333762
[2] Adachi, K., A note on the calculation of strain histories in orthogonal streamline coordinate systems, Rheol. Acta, 25, 6, 555-563, (1986) · Zbl 0608.76009 · doi:10.1007/BF01358163
[3] Arnol’D, V. I., Sur la topologie des écoulements stationnaires des fluides parfaits, C. R. Acad. Sci. Paris, 261, 312-314, (1965) · Zbl 0145.22203
[4] Arnol’D, V. I., On the topology of three-dimensional steady flows of an ideal fluid, J. Appl. Math. Mech., 30, 223-226, (1966) · Zbl 0156.23002 · doi:10.1016/0021-8928(66)90070-0
[5] Ashurst, W. T.; Kerstein, A. R.; Kerr, R. M.; Gibson, C. H., Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence, Phys. Fluids, 30, 8, 2343-2353, (1987) · doi:10.1063/1.866513
[6] Attinger, S.; Dentz, M.; Kinzelbach, W., Exact transverse macro dispersion coefficients for transport in heterogeneous porous media, Stoch. Environ. Res. Risk Assess., 18, 1, 9-15, (2004) · Zbl 1145.76433 · doi:10.1007/s00477-003-0160-6
[7] De Barros, F. P. J.; Dentz, M.; Koch, J.; Nowak, W., Flow topology and scalar mixing in spatially heterogeneous flow fields, Geophys. Res. Lett., 39, 8, (2012) · doi:10.1029/2012GL051302
[8] Batchelor, G. K., An Introduction to Fluid Dynamics, (2000), Cambridge University Press · Zbl 0958.76001 · doi:10.1017/CBO9780511800955
[9] Berkowitz, B.; Cortis, A.; Dentz, M.; Scher, H., Modeling non-Fickian transport in geological formations as a continuous time random walk, Rev. Geophys., 44, (2006) · doi:10.1029/2005RG000178
[10] Bijeljic, B.; Mostaghimi, P.; Blunt, M. J., Signature of non-Fickian solute transport in complex heterogeneous porous media, Phys. Rev. Lett., 107, (2011) · doi:10.1103/PhysRevLett.107.204502
[11] De Carvalho, T. P.; Morvan, H. P.; Hargreaves, D. M.; Oun, H.; Kennedy, A., Pore-scale numerical investigation of pressure drop behaviour across open-cell metal foams, Trans. Porous Med., 117, 2, 311-336, (2017) · doi:10.1007/s11242-017-0835-y
[12] Cirpka, O. A.; De Barros, F. P. J.; Chiogna, G.; Rolle, M.; Nowak, W., Stochastic flux-related analysis of transverse mixing in two-dimensional heterogeneous porous media, Water Resour. Res., 47, 6, (2011)
[13] Cocke, W. J., Turbulent hydrodynamic line stretching: consequences of isotropy, Phys. Fluids, 12, 12, 2488-2492, (1969) · Zbl 0195.27902 · doi:10.1063/1.1692385
[14] Cushman, J. H., Theory and Applications of Transport in Porous Media, 1, (2013), Springer
[15] De Anna, P.; Le Borgne, T.; Dentz, M.; Tartakovsky, A. M.; Bolster, D.; Davy, P., Flow intermittency, dispersion, and correlated continuous time random walks in porous media, Phys. Rev. Lett., 110, 18, (2013) · doi:10.1103/PhysRevLett.110.184502
[16] Dean, D. S.; Drummond, I. T.; Horgan, R. R., Effect of helicity on the effective diffusivity for incompressible random flows, Phys. Rev. E, 63, (2001) · doi:10.1103/PhysRevE.63.061205
[17] Dentz, M.; De Barros, F. P. J.; Le Borgne, T.; Lester, D. R., Evolution of solute blobs in heterogeneous porous media, J. Fluid Mech., 853, 621-646, (2018) · Zbl 1415.76596 · doi:10.1017/jfm.2018.588
[18] Dentz, M.; Kang, P. K.; Comolli, A.; Le Borgne, T.; Lester, D. R., Continuous time random walks for the evolution of Lagrangian velocities, Phys. Rev. Fluids, 1, (2016) · doi:10.1103/PhysRevFluids.1.074004
[19] Dentz, M.; Le Borgne, T.; Lester, D. R.; De Barros, F. P. J., Scaling forms of particle densities for Lévy walks and strong anomalous diffusion, Phys. Rev. E, 92, 3, (2015)
[20] Dentz, M.; Lester, D. R.; Borgne, T. L.; De Barros, F. P. J., Coupled continuous-time random walks for fluid stretching in two-dimensional heterogeneous media, Phys. Rev. E, 94, 6, (2016)
[21] Dieci, L.; Russell, R. D.; Van Vleck, E. S., On the compuation of Lyapunov exponents for continuous dynamical systems, SIAM J. Numer. Anal., 34, 1, 402-423, (1997) · Zbl 0891.65090 · doi:10.1137/S0036142993247311
[22] Dieci, L.; Van Vleck, E. S., On the error in QR integration, SIAM J. Numer. Anal., 46, 3, 1166-1189, (2008) · Zbl 1170.65068 · doi:10.1137/06067818X
[23] Duplat, J.; Innocenti, C.; Villermaux, E., A nonsequential turbulent mixing process, Phys. Fluids, 22, 3, (2010) · Zbl 1188.76043 · doi:10.1063/1.3319821
[24] Edery, Y.; Guadagnini, A.; Scher, H.; Berkowitz, B., Origins of anomalous transport in heterogeneous media: structural and dynamic controls, Water Resour. Res., 50, 2, 1490-1505, (2014) · doi:10.1002/2013WR015111
[25] Finnigan, J. J.; Moffat, H. K.; Tsinober, A., Streamline coordinates, moving frames, chaos and integrability in fluid flow, Proc. IUTAM Symp. Topological Fluid Mechanics, 1, 64-74, (1990), Cambridge University Press
[26] Finnigan, J. J., A streamline coordinate system for distorted two-dimensional shear flows, J. Fluid Mech., 130, 241-258, (1983) · Zbl 0514.76060 · doi:10.1017/S002211208300107X
[27] Fiori, A.; Jankovic, I.; Dagan, G.; Cvetkovic, V., Ergodic transport through aquifers of non-Gaussian log conductivity distribution and occurence of anomalous behavior, Water Resour. Res., 43, (2007)
[28] Girimaji, S. S.; Pope, S. B., Material-element deformation in isotropic turbulence, J. Fluid Mech., 220, 427-458, (1990) · doi:10.1017/S0022112090003330
[29] Holm, D. D.; Kimura, Y., Zero-helicity Lagrangian kinematics of three-dimensional advection, Phys. Fluids A, 3, 5, 1033-1038, (1991) · doi:10.1063/1.858083
[30] Holzner, M.; Morales, V. L.; Willmann, M.; Dentz, M., Intermittent Lagrangian velocities and accelerations in three-dimensional porous medium flow, Phys. Rev. E, 92, (2015)
[31] Kang, P. K.; Dentz, M.; Le Borgne, T.; Juanes, R., Anomalous transport on regular fracture networks: impact of conductivity heterogeneity and mixing at fracture intersections, Phys. Rev. E, 92, (2015)
[32] Kelvin, Lord, Reprint of Papers on Electrostatics and Magnetism, (1884), Macmillan & Company
[33] Kenkre, V. M.; Montroll, E. W.; Shlesinger, M. F., Generalized master equations for continuous-time random walks, J. Stat. Phys., 9, 1, 45-50, (1973) · doi:10.1007/BF01016796
[34] Kraichnan, R. H., Diffusion by a random velocity field, Phys. Fluids, 13, 1, 22-31, (1970) · Zbl 0193.27106 · doi:10.1063/1.1692799
[35] Le Borgne, T.; Dentz, M.; Carrera, J., Lagrangian statistical model for transport in highly heterogeneous velocity fields, Phys. Rev. Lett., 101, (2008) · doi:10.1103/PhysRevLett.101.090601
[36] Le Borgne, T.; Dentz, M.; Carrera, J., Spatial Markov processes for modeling Lagrangian particle dynamics in heterogeneous porous media, Phys. Rev. E, 78, (2008)
[37] Le Borgne, T.; Dentz, M.; Villermaux, E., Stretching, coalescence, and mixing in porous media, Phys. Rev. Lett., 110, (2013) · doi:10.1103/PhysRevLett.110.204501
[38] Le Borgne, T.; Dentz, M.; Villermaux, E., The lamellar description of mixing in porous media, J. Fluid Mech., 770, 458-498, (2015) · doi:10.1017/jfm.2015.117
[39] Lester, D. R.; Dentz, M.; Le Borgne, T., Chaotic mixing in three-dimensional porous media, J. Fluid Mech., 803, 144-174, (2016) · Zbl 1462.76182 · doi:10.1017/jfm.2016.486
[40] Meneveau, C., Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows, Annu. Rev. Fluid Mech., 43, 1, 219-245, (2011) · Zbl 1299.76088 · doi:10.1146/annurev-fluid-122109-160708
[41] Moffatt, H. K., The degree of knottedness of tangled vortex lines, J. Fluid Mech., 35, 1, 117-129, (1969) · Zbl 0159.57903 · doi:10.1017/S0022112069000991
[42] Ottino, J. M., The Kinematics of Mixing: Stretching, Chaos, and Transport, (1989), Cambridge University Press · Zbl 0721.76015
[43] Scher, H.; Lax, M., Stochastic transport in a disordered solid. Part I. Theory, Phys. Rev. B, 7, 1, 4491-4502, (1973) · doi:10.1103/PhysRevB.7.4491
[44] Sposito, G., Topological groundwater hydrodynamics, Adv. Water Resour., 24, 7, 793-801, (2001) · doi:10.1016/S0309-1708(00)00077-4
[45] Tabor, M., Stretching and Alignment in General Flow Fields: Classical Trajectories from Reynolds Number Zero to Infinity, 83-110, (1992), Springer · Zbl 0788.76021
[46] Thalabard, S.; Krstulovic, G.; Bec, J., Turbulent pair dispersion as a continuous-time random walk, J. Fluid Mech., 755, R4, (2014) · doi:10.1017/jfm.2014.445
[47] Truesdell, C.; Noll, W., The Non-linear Field Theories of Mechanics, 2, (1992), Springer · Zbl 0779.73004 · doi:10.1007/978-3-662-13183-1
[48] Tyukhova, A.; Dentz, M.; Kinzelbach, W.; Willmann, M., Mechanisms of anomalous dispersion in flow through heterogeneous porous media, Phys. Rev. Fluids, 1, (2016) · doi:10.1103/PhysRevFluids.1.074002
[49] Ye, Y.; Chiogna, G.; Cirpka, O. A.; Grathwohl, P.; Rolle, M., Experimental evidence of helical flow in porous media, Phys. Rev. Lett., 115, (2015)
[50] Zaburdaev, V.; Denisov, S.; Klafter, J., Lévy walks, Rev. Mod. Phys., 87, 483-530, (2015) · doi:10.1103/RevModPhys.87.483
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.