×

Linear port-Hamiltonian descriptor systems. (English) Zbl 1401.37070

Summary: The modeling framework of port-Hamiltonian systems is systematically extended to linear constrained dynamical systems (descriptor systems, differential-algebraic equations) of arbitrary index and with time-varying constraints. A new algebraically and geometrically defined system structure is derived. It is shown that this structure is invariant under equivalence transformations, and that it is adequate also for the modeling of high-index descriptor systems. The regularization procedure for descriptor systems to make them suitable for simulation and control is modified to preserve the port-Hamiltonian form. The relevance of the new structure is demonstrated with several examples.

MSC:

37K05 Hamiltonian structures, symmetries, variational principles, conservation laws (MSC2010)
65L80 Numerical methods for differential-algebraic equations
93B17 Transformations
93B11 System structure simplification
93C15 Control/observation systems governed by ordinary differential equations
93C05 Linear systems in control theory

Software:

SIMPACK

References:

[1] Bals J, Hofer G, Pfeiffer A, Schallert C (2005) Virtual iron bird—a multidisciplinary modelling and simulation platform for new aircraft system architectures. In: Deutscher Luft-und Raumfahrtkongress, Friedrichshafen, Germany
[2] Beattie C, Gugercin S (2011) Structure-preserving model reduction for nonlinear port-Hamiltonian systems. In: 50th IEEE conference on decision and control and European control conference (CDC-ECC), 2011. IEEE, pp 6564-6569
[3] Binder A, Mehrmann V, Miedlar A, Schulze P (2015) A Matlab toolbox for the regularization of descriptor systems arising from generalized realization procedures. Preprint 24-2015, Institut für Mathematik, TU Berlin
[4] Breedveld PC (2008) Modeling and simulation of dynamic systems using bond graphs. EOLSS Publishers Co. Ltd./UNESCO, Oxford, pp 128-173
[5] Brenan KE, Campbell SL, Petzold LR (1996) Numerical solution of initial-value problems in differential algebraic equations, 2nd edn. SIAM Publications, Philadelphia · Zbl 0844.65058
[6] Bunse-Gerstner, A.; Byers, R.; Mehrmann, V.; Nichols, NK, Feedback design for regularizing descriptor systems, Linear Algebra Appl, 299, 119-151, (1999) · Zbl 0944.65082 · doi:10.1016/S0024-3795(99)00167-6
[7] Byers, R.; Kunkel, P.; Mehrmann, V., Regularization of linear descriptor systems with variable coefficients, SIAM J Control Optim, 35, 117-133, (1997) · Zbl 0895.93026 · doi:10.1137/S0363012994278936
[8] Byrnes, CI; Isidori, A.; Willems, JC, Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems, IEEE Trans Autom Control, 36, 1228-1240, (1991) · Zbl 0758.93007 · doi:10.1109/9.100932
[9] Campbell, SL, A general form for solvable linear time varying singular systems of differential equations, SIAM J Math Anal, 18, 1101-1115, (1987) · Zbl 0623.34005 · doi:10.1137/0518081
[10] Campbell, SL, Linearization of DAEs along trajectories, Z Angew Math Phys, 46, 70-84, (1995) · Zbl 0837.34007 · doi:10.1007/BF00952257
[11] Campbell, SL; Kunkel, P.; Mehrmann, V.; Biegler, LT (ed.); Campbell, SL (ed.); Mehrmann, V. (ed.), Regularization of linear and nonlinear descriptor systems, 17-36, (2012), Philadelphia · Zbl 1317.93071
[12] Couenne, F.; Jallut, C.; Maschke, BM; Tayakout, M.; Breedveld, PC, Bond graph for dynamic modelling in chemical engineering, Chem Eng Process, 47, 1994-2003, (2008) · doi:10.1016/j.cep.2007.09.006
[13] Dai L (1989) Singular control systems, volume 118 of Lecture Notes in Control and Inform. Sci. Springer-Verlag, Berlin/Heidelberg · Zbl 0669.93034
[14] Dirac, PAM, Generalized Hamiltonian dynamics, Can J Math, 2, 129-148, (1950) · Zbl 0036.14104 · doi:10.4153/CJM-1950-012-1
[15] Egger, H.; Kugler, T., Damped wave systems on networks: exponential stability and uniform approximations, Numer Math, 138, 839-867, (2018) · Zbl 1516.35262 · doi:10.1007/s00211-017-0924-4
[16] Egger, H.; Kugler, T.; Liljegren-Sailer, B.; Marheineke, N.; Mehrmann, V., On structure preserving model reduction for damped wave propagation in transport networks, SIAM J Sci Comput, 40, a331-a365, (2018) · Zbl 1383.65110 · doi:10.1137/17M1125303
[17] Eich-Soellner E, Führer C (1998) Numerical methods in multibody dynamics. Teubner, Stuttgart · Zbl 0899.70001 · doi:10.1007/978-3-663-09828-7
[18] Freund RW (2011) The SPRIM algorithm for structure-preserving order reduction of general RLC circuits. In: Model reduction for circuit simulation. Springer, pp 25-52
[19] Fujimoto, K.; Sugie, T., Canonical transformation and stabilization of generalized Hamiltonian systems, Syst Control Lett, 42, 217-227, (2001) · Zbl 1032.93007 · doi:10.1016/S0167-6911(00)00091-8
[20] Gillis, N.; Mehrmann, V.; Sharma, P., Computing the nearest stable matrix pairs, Numer Linear Algebra Appl, 25, e2153, (2018) · Zbl 1513.65131 · doi:10.1002/nla.2153
[21] Golo, G.; Schaft, AJ; Breedveld, PC; Maschke, BM; Rantzer, A. (ed.); Johansson, R. (ed.), Hamiltonian formulation of bond graphs, 351-372, (2003), Heidelberg
[22] Gugercin, S.; Polyuga, RV; Beattie, C.; Schaft, AJ, Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems, Automatica, 48, 1963-1974, (2012) · Zbl 1257.93021 · doi:10.1016/j.automatica.2012.05.052
[23] Hiller, M.; Hirsch, K., Multibody system dynamics and mechatronics, Z Angew Math Mech, 86, 87-109, (2006) · Zbl 1155.70303 · doi:10.1002/zamm.200510253
[24] Hinrichsen D, Pritchard AJ (2005) Mathematical system theory I. Modelling, state space analysis, stability and robustness. Springer, New York · Zbl 1074.93003
[25] Hou M (1994) A three-link planar manipulator model. Sicherheitstechnische Regelungs- und Meßtechnik. Bergische Universität-GH Wuppertal, Wuppertal
[26] Hou M, Müller PC (1994) \(LQ\) and tracking control of descriptor systems with application to constrained manipulator. Technical report, Sicherheitstechnische Regelungs- und Meßtechnik, Universität Wuppertal, Gauß-Straße, Wuppertal 1, Germany
[27] Jacob B, Zwart H (2012) Linear port-Hamiltonian systems on infinite-dimensional spaces. Operator theory: advances and applications, vol 223. Springer, Berlin · Zbl 1254.93002 · doi:10.1007/978-3-0348-0399-1
[28] Kleijn C (2013)20-sim 4C 2.1 Reference manual. Controlab Products B.V
[29] Kunkel, P.; Mehrmann, V., Analysis of over-and underdetermined nonlinear differential-algebraic systems with application to nonlinear control problems, Math Control Signals Syst, 14, 233-256, (2001) · Zbl 1116.34300 · doi:10.1007/PL00009884
[30] Kunkel P, Mehrmann V (2006) Differential-algebraic equations. Analysis and numerical solution. EMS Publishing House, Zürich · Zbl 1095.34004 · doi:10.4171/017
[31] Kunkel, P.; Mehrmann, V.; Rath, W., Analysis and numerical solution of control problems in descriptor form, Math Control Signals Syst, 14, 29-61, (2001) · Zbl 1066.93019 · doi:10.1007/PL00009876
[32] Kunkel, P.; Mehrmann, V.; Scholz, L., Self-adjoint differential-algebraic equations, Math Control Signals Syst, 26, 47-76, (2014) · Zbl 1291.93060 · doi:10.1007/s00498-013-0109-3
[33] Lamour R, März R, Tischendorf C (2013) Differential-algebraic equations: a projector based analysis. Springer, Berlin · Zbl 1276.65045 · doi:10.1007/978-3-642-27555-5
[34] Maschke, BM; Schaft, AJ; Breedveld, PC, An intrinsic Hamiltonian formulation of network dynamics: non-standard Poisson structures and gyrators, J Frankl Inst, 329, 923-966, (1992) · Zbl 0807.70015 · doi:10.1016/S0016-0032(92)90049-M
[35] Mehl C, Mehrmann V, Wojtylak M (2018) Linear algebra properties of dissipative Hamiltonian descriptor systems. SIAM J Matrix Anal Appl. To appear · Zbl 1403.15009
[36] Mehrmann, V.; Schröder, C., Nonlinear eigenvalue and frequency response problems in industrial practice, J Math Ind, 1, 18, (2011) · Zbl 1273.65058
[37] Ortega, R.; Schaft, AJ; Mareels, Y.; Maschke, BM, Putting energy back in control, Control Syst Mag, 21, 18-33, (2001) · doi:10.1109/37.915398
[38] Polderman JW, Willems JC (1998) Introduction to mathematical systems theory: a behavioural approach. Springer, New York · doi:10.1007/978-1-4757-2953-5
[39] Polyuga, RV; Schaft, AJ, Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity, Automatica, 46, 665-672, (2010) · Zbl 1193.93085 · doi:10.1016/j.automatica.2010.01.018
[40] Schiehlen W (1993) Advanced multibody system dynamics. Kluwer Academic Publishers, Stuttgart · Zbl 0790.00004 · doi:10.1007/978-94-017-0625-4
[41] Schlacher, K.; Kugi, A., Automatic control of mechatronic systems, Int J Appl Math Comput Sci, 11, 131-164, (2001) · Zbl 0976.93062
[42] Scholz L (2017) Condensed forms for linear port-Hamiltonian descriptor systems. Preprint 09-2017. Institut für Mathematik, TU Berlin
[43] Trautenberg W Simpack 8.9. Manual, INTEC GmbH, Angelrieder Feld 13, 82234 Wessling
[44] Schaft, A. J., Port-Hamiltonian Systems: Network Modeling and Control of Nonlinear Physical Systems, 127-167, (2004), Vienna · doi:10.1007/978-3-7091-2774-2_9
[45] van der Schaft AJ (2006) Port-Hamiltonian systems: an introductory survey. In: Verona JL, Sanz-Sole M, Verdura J (eds) Proceedings of the international congress of mathematicians, vol. III, invited lectures, Madrid, Spain, pp 1339-1365 · Zbl 1108.93012
[46] van der Schaft AJ (2013) Port-Hamiltonian differential-algebraic systems. In: Surveys in differential-algebraic equations I. Springer, pp 173-226 · Zbl 1275.34002
[47] Schaft, AJ; Maschke, BM, Hamiltonian formulation of distributed-parameter systems with boundary energy flow, J Geom Phys, 42, 166-194, (2002) · Zbl 1012.70019 · doi:10.1016/S0393-0440(01)00083-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.