×

Stabilization of a suspension bridge with locally distributed damping. (English) Zbl 1403.93167

Summary: We study a nonlocal evolution equation modeling the deformation of a bridge, either a footbridge or a suspension bridge. Contrarily to the previous literature, we prove the exponential asymptotic stability of the considered model with a small amount of damping (namely, on a small collar around the whole boundary) which represents less cost of material.

MSC:

93D20 Asymptotic stability in control theory
93C95 Application models in control theory
Full Text: DOI

References:

[1] Alabau-Boussouira, F., Convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems, Appl Math Optim, 51, 61-105, (2005) · Zbl 1107.35077 · doi:10.1007/s00245
[2] Alabau-Boussouira, F., A unified approach via convexity for optimal energy decay rates of finite and infinite dimensional vibrating damped systems with applications to semi-discretized vibrating damped systems, J Differ Equ, 248, 1473-1517, (2010) · Zbl 1397.35068 · doi:10.1016/j.jde.2009.12.005
[3] Al-Gwaiz, M.; Benci, V.; Gazzola, F., Bending and stretching energies in a rectangular plate modeling suspension bridges, Nonlinear Anal, 106, 181-734, (2014) · Zbl 1288.35201 · doi:10.1016/j.na.2014.04.011
[4] Ammari K, Tucsnak M, Tenenbaum GA (2007) Sharp geometric condition for the boundary exponential stabilizability of a square plate by moment feedbacks only. In: Control of coupled partial differential equations. International series of numerical mathematics, vol 155. Birkhäuser, Basel, pp 111-711
[5] Ammari, K.; Tucsnak, M., Stabilization of Bernoulli-Euler beams by means of a pointwise feedback force, SIAM J Control Optim, 39, 11601-71181, (2000) · Zbl 0983.35021 · doi:10.1137/S0363012998349315
[6] Avalos, G.; Geredeli, PG; Webster, JT, Finite dimensional smooth attractor for the Berger plate with dissipation acting on a portion of the boundary, Commun Pure Appl Anal, 15, 2301-2328, (2016) · Zbl 1362.35172 · doi:10.3934/cpaa.2016038
[7] Amman OH, von Kármán T, Woodruff GB (1941) The failure of the Tacoma Narrows Bridge. Technical Report, Federal Works Agency, Washington, D.C
[8] Berger, HM, A new approach to the analysis of large deflections of plates, J Appl Mech, 22, 4651-7472, (1955)
[9] Bochicchio, I.; Giorgi, C.; Vuk, E., Long-term damped dynamics of the extensible suspension bridge, Int J Differ Equ, 2010, 420.1-420.19, (2010) · Zbl 1225.35152 · doi:10.1155/2010/383420
[10] Burgreen, D., Free vibrations of a pin-ended column with constant distance between pin ends, J Appl Mech, 18, 1351-7139, (1951)
[11] Cavalcanti, MM; Domingos Cavalcanti, VN; Fukuoka, R.; Toundykov, D., Unified approach to stabilization of waves on compact surfaces by simultaneous interior and boundary feedbacks of unrestricted growth, Appl Math Optim, 69, 83-122, (2014) · Zbl 1311.35137 · doi:10.1007/s00245-013-9218-0
[12] Cavalcanti, MM; Domingos Cavalcanti, VN; Lasiecka, I., Wellposedness and optimal decay rates for wave equation with nonlinear boundary damping-source interaction, J Differ Equ, 236, 407-459, (2007) · Zbl 1117.35048 · doi:10.1016/j.jde.2007.02.004
[13] Cavalcanti, MM; Lasiecka, I.; Toundykov, D., Wave equation with damping affecting only a subset of static Wentzell boundary is uniformly stable, Trans Am Math Soc, 364, 5693-5713, (2012) · Zbl 1408.35101 · doi:10.1090/S0002-9947-2012-05583-8
[14] Conlon L (2008) Differentiable manifolds. Modern Birkhäuser classics, 2nd edn. Birkhäuser Boston, Inc., Boston
[15] Chueshov, I.; Lasiecka, I., Long-time dynamics of von Karman semi-flows with non-linear boundary/interior damping, J Differ Equ, 233, 421-786, (2007) · Zbl 1116.35017 · doi:10.1016/j.jde.2006.09.019
[16] Chueshov, I.; Lasiecka, I.; Webster, JT, Attractors for delayed, nonrotational von Karman plates with applications to flow-structure interactions without any damping, Commun Partial Differ Equ, 39, 19651-71997, (2014) · Zbl 1299.74053 · doi:10.1080/03605302.2014.930484
[17] Chueshov, I.; Eller, M.; Lasiecka, I., On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation, Commun Partial Differ Equ, 27, 1901-1951, (2002) · Zbl 1021.35020 · doi:10.1081/PDE-120016132
[18] Chueshov, I.; Lasiecka, I.; Toundykov, D., Long-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponent, Discrete Contin Dyn Syst, 20, 4591-7509, (2008) · Zbl 1151.35009
[19] Chueshov, I.; Lasiecka, I.; Toundykov, D., Global attractor for a wave equation with nonlinear localized boundary damping and a source term of critical exponent, J Dyn Differ Equ, 21, 2691-7314, (2009) · Zbl 1173.35025 · doi:10.1007/s10884-009-9132-y
[20] Chueshov, Igor; Lasiecka, Irena, Long-Time Behavior of Second-Order Abstract Equations, 391-446, (2010), New York, NY · Zbl 1298.35001
[21] Daoulatli, M.; Lasiecka, I.; Toundykov, D., Uniform energy decay for a wave equation with partially supported nonlinear boundary dissipation without growth restrictions, Discrete Contin Dyn Syst Ser S, 2, 67-94, (2009) · Zbl 1172.35443 · doi:10.3934/dcdss.2009.2.67
[22] Eller, M.; Toundykov, D., Semiglobal exact controllability of nonlinear plates, SIAM J Control Optim, 53, 24801-72513, (2015) · Zbl 1327.93075 · doi:10.1137/130939705
[23] Ferrero, A.; Gazzola, F., A partially hinged rectangular plate as a model for suspension bridges, Discrete Contin Dyn Syst A, 35, 5879-5908, (2015) · Zbl 1336.35012 · doi:10.3934/dcds.2015.35.5879
[24] Ferreira, V.; Gazzola, F.; Moreira dos Santos, E., Instability of modes in a partially hinged rectangular plate, J Differ Equ, 261, 6302-6340, (2016) · Zbl 1361.35025 · doi:10.1016/j.jde.2016.08.037
[25] Geredeli, PG; Lasiecka, I., Asymptotic analysis and upper semicontinuity with respect to rotational inertia of attractors to von Karman plates with geometrically localized dissipation and critical nonlinearity, Nonlinear Anal, 91, 72-92, (2013) · Zbl 1286.35044 · doi:10.1016/j.na.2013.06.008
[26] Geredeli, PG; Lasiecka, I.; Webster, JT, Smooth attractors of finite dimension for von Karman evolutions with nonlinear frictional damping localized in a boundary layer, J Differ Equ, 254, 1193-1229, (2013) · Zbl 1262.35054 · doi:10.1016/j.jde.2012.10.016
[27] Geredeli, PG; Webster, JT, Qualitative results on the dynamics of a Berger plate with nonlinear boundary damping, Nonlinear Anal Real World Appl, 31, 227-256, (2016) · Zbl 1346.35024 · doi:10.1016/j.nonrwa.2016.02.002
[28] Glover, J.; Lazer, AC; Mckenna, PJ, Existence and stability of of large scale nonlinear oscillation in suspension bridges, Z Angew Math Phys, 40, 172-200, (1989) · Zbl 0677.73046 · doi:10.1007/BF00944997
[29] Howell, JS; Lasiecka, I.; Webster, JT, Quasi-stability and exponential attractors for a non-gradient system-applications to piston-theoretic plates with internal damping, Evol Equ Control Theory, 5, 5671-7603, (2016) · Zbl 1355.35027
[30] Kim, JU, Exact semi-internal control of an Euler-Bernoulli equation SIAM, J Control Optim, 30, 1001-1023, (1992) · Zbl 0754.35179 · doi:10.1137/0330054
[31] Knightly, GH; Sather, D., Nonlinear buckled states of rectangular plates, Arch Ration Mech Anal, 54, 3561-7372, (1974) · Zbl 0301.73009 · doi:10.1007/BF00249196
[32] Komornik, V., On the nonlinear boundary stabilization of Kirchhoff plates, NoDEA, 1, 323-337, (1994) · Zbl 0818.35126 · doi:10.1007/BF01194984
[33] Lazer, AC; McKenna, PJ, Large-amplitude periodic oscillations in suspension bridges: some new connections with non-linear analysis, SIAM Rev, 32, 537-578, (1990) · Zbl 0725.73057 · doi:10.1137/1032120
[34] Lasiecka, I.; Toundykov, D., Energy decay rates for the semilinear wave equation with nonlinear localized damping and source terms, Nonlinear Anal, 64, 1757-1797, (2006) · Zbl 1096.35021 · doi:10.1016/j.na.2005.07.024
[35] Lasiecka, I.; Webster, J., Eliminating flutter for clamped von Karman plates immersed in subsonic flows, Commun Pure Appl Anal, 13, 19351-71969, (2014) · Zbl 1310.74019 · doi:10.3934/cpaa.2014.13.1935
[36] Lasiecka, I.; Webster, JT, Feedback stabilization of a fluttering panel in an inviscid subsonic potential flow, SIAM J Math Anal, 48, 1848-1891, (2016) · Zbl 1382.74046 · doi:10.1137/15M1040529
[37] Lions JL (1988) Contrôlabilité exacte des systèmes distribués. Masson, Paris · Zbl 0589.49022
[38] Mansfield EH (1989) The bending and stretching of plates, 2nd edn. Cambridge University Press, Cambridge · Zbl 0755.73003 · doi:10.1017/CBO9780511525193
[39] McKenna, PJ; Walter, W., Non-linear oscillations in a suspension bridge, Arch Ration Mech Anal, 98, 167-177, (1987) · Zbl 0676.35003 · doi:10.1007/BF00251232
[40] McKenna, PJ; Walter, W., Travelling waves in a suspension bridge, SIAM J Appl Math, 50, 703-715, (1990) · Zbl 0699.73038 · doi:10.1137/0150041
[41] Messaoudi, SA; Mukiawa, SE; Abualrub, T. (ed.); Jarrah, A. (ed.); Kallel, S. (ed.); Sulieman, H. (ed.), A suspension bridge problem: existence and stability, No. 190, (2017), Cham
[42] Nakao, M., Energy decay for the linear and semilinear wave equations in exterior domains with some localized dissipations, Math Z, 4, 781-797, (2001) · Zbl 1002.35079 · doi:10.1007/s002090100275
[43] Puel JP, Tucsnak M (1994) Existence globale de solutions fortes pour le système complet des équations de von Kármán dynamiques (French) [Global existence of strong solutions for the full system of dynamic von Kármán equations] C R Acad Sci Paris Sér I Math 318(5):449-454 · Zbl 0799.73041
[44] Scott R (2001) In the wake of Tacoma. Suspension bridges and the quest for aerodynamic stability. ASCE, Reston · doi:10.1061/9780784405420
[45] Tucsnak, M., Semi-internal stabilization for a non-linear Bernoulli-Euler equation, Math Methods Appl Sci, 19, 897-907, (1996) · Zbl 0863.93071 · doi:10.1002/(SICI)1099-1476(19960725)19:11<897::AID-MMA801>3.0.CO;2-#
[46] Triggiani, R.; Yao, PF, Carleman estimates with no lower-Orderterms for general Riemannian wave equations. Global uniqueness andobservability in one shot, Appl Math Optim, 46, 331-375, (2002) · Zbl 1030.35018 · doi:10.1007/s00245-002-0751-5
[47] Ventsel E, Krauthammer T (2001) Thin plates and shells: theory: analysis, and applications. CRC Press, Cambridge · doi:10.1201/9780203908723
[48] Villaggio P (1997) Mathematical models for elastic structures. Cambridge University Press, Cambridge · Zbl 0978.74002 · doi:10.1017/CBO9780511529665
[49] Woinowsky-Krieger, S., The effect of an axial force on the vibration of hinged bars, J Appl Mech, 17, 351-736, (1950) · Zbl 0036.13302
[50] Zuazua, E., Exponential decay for semilinear wave equations with localized damping, Commun Partial Differ Equ, 15, 205-235, (1990) · Zbl 0716.35010 · doi:10.1080/03605309908820684
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.