×

Model combining hydrodynamics and fractal theory for analysis of in vivo peripheral pulmonary and systemic resistance of shunt cardiac defects. (English) Zbl 1397.92143

Summary: The fractal state of the arterial vascular tree is considered to have a universal dimension related to the principle of minimum work rate, but can demonstrate the capacity to adapt to other dimensions in disease states such as congenital high-flow pulmonary hypertension (PH) by a process that is incompletely understood. To document and interpret fractal adaptation in patients with different degrees of PH, pulmonary and systemic vascular resistance was analyzed by a model that evaluated the fractal dimension, \(x\), of the Poiseuille resistance contribution of the arterial vessel radius between 10 and 100\(\mu\)m, via the proportionality \(Q\propto(R_{\mathrm{peri}}/BL)^{-x/4}\), with \(Q\), \(R_{\mathrm{peri}}\), and \(BL\) clinically observed variables representing total pulmonary or systemic blood flow, its peripheral arterial resistance, and body length, respectively. Identification of \(x\) in the pulmonary (P) and systemic (S) beds was evaluated from hemodynamic data of 213 patients, categorized into 7 groups by PH grade. In controls without PH, \(x_P=2.2\) while the dimension increased to 3.0, with the systemic dimension constant at \(x_S=3.1\). Our model predicts that severe grades of PH are associated with: a more elongated and hindered vessel in the periphery, and reductions in vessel numbers, as unit pulmonary resistive arterial trees \((N_1)\) and their component intra-acinar arteries \((N_W)\). These model network changes suggest a complex adaptive process of arterial network reorganization in the pulmonary circulation to minimize the work rate of high-flow congenital heart defects.

MSC:

92C35 Physiological flow
28A80 Fractals
76Z05 Physiological flows
Full Text: DOI

References:

[1] Becu, L.M.; Fontana, R.S.; DuShane, J.W.; Kirklin, J.W.; Burchell, H.B.; Edwards, J.E., Anatomic and pathologic studies in ventricular septal defect, Circulation, 14, 349-364, (1956)
[2] Bennett, S.H.; Eldridge, M.W.; Zaghi, D.; Zaghi, S.E.; Milstein, J.M.; Goetzman, B.W., Form and function of fetal and neonatal pulmonary arterial bifurcations, Am. J. physiol. heart circ. physiol., 279, H3047-H3057, (2000)
[3] Bergel, D.H.; Milnor, W.R., Pulmonary vascular impedance in the dog, Circ. res., 16, 401-415, (1965)
[4] Bhattacharya, J.; Staub, N.C., Direct measurement of microvascular pressures in the isolated perfused dog lung, Science, 210, 327-328, (1980)
[5] Brody, J.S.; Stemmler, E.J.; DuBois, A.B., Longitudinal distribution of vascular resistance in the pulmonary arteries, capillaries, and veins, J. clin. invest., 47, 783-799, (1968)
[6] Chaliki, H.P.; Hurrell, D.G.; Nishimura, R.A.; Reinke, R.A.; Appleton, C.P., Pulmonary venous pressure: relationship to pulmonary artery, pulmonary wedge, and left atrial pressure in normal, lightly sedated dogs, Catheter cardiovasc. interv., 56, 3, 432-438, (2002)
[7] Chemla, D.; Castelain, V.; Hervé, P.; Lecarpentier, Y.; Brimioulle, S., Haemodynamic evaluation of pulmonary hypertension, Eur. respir. J., 20, 1314-1331, (2002)
[8] Connolly, D.C.; Kirklin, J.W.; Wood., E.H., The relationship between pulmonary artery wedge pressure and left atrial pressure in man, Circ res., 2, 5, 434-440, (1954)
[9] Dawson, C.D.; Krenz, G.S.; Karau, K.L.; Haworth, S.T.; Hanger, C.C.; Linehan, J.H., Structure-function relationships in the pulmonary arterial tree, J. appl. physiol., 86, 569-583, (1999)
[10] Gafiychuk, V.V.; Lubashevsky, I.A., On the principles of the vascular network branching, J. theor. biol., 212, 1-9, (2001)
[11] Ghorishi, Z.; Milstein, J.M.; Poulain, F.R.; Moon-Grady, A.; Tacy, T.; Bennett, S.H.; Fineman, J.R.; Eldridge, M.W., Shear stress paradigm for peripheral fractal arterial network remodeling in lambs with pulmonary hypertension and increased pulmonary blood flow, Am. J. physiol. heart circ. physiol., 292, H3006-H3018, (2007)
[12] Grasman, J.; Brascamp, J.W.; Van Leeuwen, J.L.; Van Putten, B., The multifractal structure of arterial trees, J. theor. biol., 220, 75-82, (2003) · Zbl 1461.92023
[13] Greenwood, E.M.; Meyrick, B.; Steinhorn, R.H.; Fineman, J.R.; Black, S.M., Alterations in TGF-β1 expression in lambs with increased pulmonary blood flow and pulmonary hypertension, Am. J. physiol. lung cell mol. physiol., 285, L209-L221, (2003)
[14] Grifka, R.G., Cardiac catheterization and angiography, (), 208-237
[15] Hakim, T.S.; Michel, R.P.; Chang, H.K., Partitioning of pulmonary vascular resistance in dogs by arterial and venous occlusion, J. appl. physiol., 52, 710-715, (1982)
[16] Haynes, R.H., Physical basis of the dependence of blood viscosity on tube radius, Am. J. physiol., 198, 1193-1200, (1960)
[17] Hill, K.D.; Lim, D.S.; Everett, A.D.; Ivy, D.D.; Moore, J.D., Assessment of pulmonary hypertension in the pediatric catheterization laboratory: current insights from the magic registry, Catheter cardiovasc. interv., 76, 865-873, (2010)
[18] Hillis, L.D.; Firth, B.G.; Winniford, M.D., Analysis of factors affecting the variability of fick versus indicator dilution measurements of cardiac output, Am. J. cardiol., 56, 764-768, (1985)
[19] Hislop, A.; Reid, L., Pulmonary arterial development during childhood: branching pattern and structure, Thorax, 28, 129-135, (1973)
[20] Hislop, A.; Haworth, S.G.; Shinebourrne, E.A.; Reid, L., Quantitative structural analysis of pulmonary vessels in isolated ventricular septal defect in infancy, Br. heart J., 37, 1014-1021, (1975)
[21] Hopkins, R.A.; Hammon, J.W.; McHale, P.A.; Smith, P.K.; Anderson, R.W., Pulmonary vascular impedance analysis of adaptation to chronically elevated blood flow in the awake dog, Circ. res., 45, 267-274, (1979)
[22] Horsfield, K., Morphometry of the small pulmonary arteries in man, Circ. res., 42, 593-597, (1978)
[23] Horsfield, K.; Woldenberg, M.J., Diameters and cross-sectional areas of branches in the human pulmonary arterial tree, Anat. rec., 223, 245-251, (1989)
[24] House, S.D.; Lipowsky, H.H., Microvascular hematocrit and red cell flux in rat cremaster muscle, Am. J. physiol., 252, H211-H222, (1987)
[25] Huang, W.; Yen, R.T.; McLaurine, M.; Bledsoe, G., Morphometry of the human pulmonary vasculature, J. appl. physiol., 81, 2123-2133, (1996)
[26] Hyman, A.L., Pulmonary vasoconstriction due to nonocclusive distension of large pulmonary arteries in the dog, Circ. res., 23, 401-413, (1968)
[27] Kamiya, A.; Takahashi, T., Quantitative assessments of morphological and functional properties of biological trees based on their fractal nature, J. appl. physiol., 102, 2315-2323, (2007)
[28] Karau, K.L.; Krenz, G.S.; Dawson, C.A., Branching exponent heterogeneity and wall shear stress distribution in vascular trees, Am. J. physiol. heart circ. physiol., 280, H1256-H1263, (2001)
[29] Kirklin, J.W.; Barrat-Boyes, B.G., Ventricular septal defects, (), 749-824
[30] Kitaoka, H.; Suki, B., Branching design of the bronchial tree based on a diameter-flow relationship, J. appl. phyiol., 82, 968-976, (1997)
[31] Kuczmarski, R.J.; Ogden, C.L.; Grummer-Strawn, L.M.; Flegal, K.M.; Guo, S.S.; Wei, R.; Mei, Z.; Curtin, L.R.; Roche, A.F.; Johnson, C.L., CDC growth charts: united states, Adv. data, 314, 1-27, (2000)
[32] Lefèvre, J., Teleonomical optimization of a fractal model of the pulmonary arterial bed, J. theor. biol., 102, 225-248, (1983)
[33] Lundell, B.P.; Casas, M.L.; Wallgren, C.G., Oxygen consumption in infants and children during heart catheterization, Pediatr. cardiol., 17, 207-213, (1996)
[34] Mandelbrot, B.B., Trees and the diameter exponent, The fractal geometry of nature, (1983), Freeman New York, pp. 156-165
[35] Mandelbrot, B.B., Multifractal measures, especially for geophysicist, (), 5-42
[36] Mayrovitz, H.N.; Roy, J., Microvascular blood flow: evidence indicating a cubic dependence on arteriolar diameter, Am. J. physiol., 245, H1031-H1038, (1983)
[37] Michel, R.P.; Hakim, T.S.; Hanson, R.E.; Dobell, A.R.C.; Keith, F.; Drinkwater, D., Distribution of lung vascular resistance after chronic systemic-to-pulmonary shunts, Am. J. physiol., 249, H1106-H1113, (1985)
[38] Milnor, W.R., Steady flow, Hemodynamics, (1982), Williams & Wilkins Baltimore, pp. 11-47
[39] Murray, C.D., The physiological principle of minimum work, I: the vascular system and the cost of blood volume, Proc. natl. acad. sci. USA, 12, 207-214, (1926)
[40] Nichols, W.W.; O’Rourke, M.F., Mcdonald’s blood flow in arteries: theoretical, ()
[41] Rabinovitch, M., Pathophysiology of pulmonary hypertension, (), 1322-1354
[42] Rippe, B.; Parker, J.C.; Townsley, M.I.; Mortillarro, N.A.; Taylor, A.E., Segmental vascular resistances and compliances in dog lung, J. appl. physiol., 62, 1206-1215, (1987)
[43] Soto, B.; Becker, A.E.; Moulaert, A.J.; Lie, J.T.; Anderson, R.H., Classification of ventricular septal defects, Br. heart J., 43, 332-343, (1980)
[44] Tatsuno, K.; Ando, M.; Takano, A.; Hatsune, K.; Konno, S., Diagnostic importance of aortography in conal ventricular-septal defect, Am. heart J., 89, 171-177, (1975)
[45] Weibel, E.R., Fractal geometry: a design principle for living organisms, Am. J. physiol., 261, L361-9, (1991)
[46] West, G.B.; Brown, J.H.; Enquist, B.J., A general model for the origin of allometric scaling laws in biology, Science, 276, 122-126, (1997)
[47] Zamir, M., Fractal dimension and multifractility in vascular branching, J. theor. biol., 212, 183-190, (2001)
[48] Zamir, M.; Sinclair, P.; Wonnacott, T.H., Relation between diameter and flow in major branches of the arch of the aorta, J. biomech., 25, 1303-1310, (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.