×

Disease embryo development network reveals the relationship between disease genes and embryo development genes. (English) Zbl 1397.92328

Summary: A basic problem for contemporary biology and medicine is exploring the correlation between human disease and underlying cellular mechanisms. For a long time, several efforts were made to reveal the similarity between embryo development and disease process, but few from the system level. In this article, we used the human protein-protein interactions (PPIs), disease genes with their classifications and embryo development genes and reconstructed a human disease-embryo development network to investigate the relationship between disease genes and embryo development genes. We found that disease genes and embryo development genes are prone to connect with each other. Furthermore, diseases can be categorized into three groups according to the closeness with embryo development in gene overlapping, interacting pattern in PPI network and co-regulated by microRNAs or transcription factors. Embryo development high-related disease genes show their closeness with embryo development at least in three biological levels. But it is not for embryo development medium-related disease genes and embryo development low-related disease genes. We also found that embryo development high-related disease genes are more central than other disease genes in the human PPI network. In addition, the results show that embryo development high-related disease genes tend to be essential genes compared with other diseases’ genes. This network-based approach could provide evidence for the intricate correlation between disease process and embryo development, and help to uncover potential mechanisms of human complex diseases.

MSC:

92C50 Medical applications (general)
92C15 Developmental biology, pattern formation
92D10 Genetics and epigenetics
92C42 Systems biology, networks

Software:

GPCR-CA; 2D-MH

References:

[1] Albert, R., Scale-free networks in cell biology, J. cell sci., 118, 4947-4957, (2005)
[2] Almaas, E., Biological impacts and context of network theory, J. exp. biol., 210, 1548-1558, (2007)
[3] Alon, U., Network motifs: theory and experimental approaches, Nat. rev. genet., 8, 450-461, (2007)
[4] Althaus, I.W.; Chou, J.J.; Gonzales, A.J.; Deibel, M.R.; Chou, K.C.; Kezdy, F.J.; Romero, D.L.; Aristoff, P.A.; Tarpley, W.G.; Reusser, F., Steady-state kinetic studies with the non-nucleoside HIV-1 reverse transcriptase inhibitor U-87201E, J. biol. chem., 268, 6119-6124, (1993)
[5] Althaus, I.W.; Gonzales, A.J.; Chou, J.J.; Romero, D.L.; Deibel, M.R.; Chou, K.C.; Kezdy, F.J.; Resnick, L.; Busso, M.E.; So, A.G., The quinoline U-78036 is a potent inhibitor of HIV-1 reverse transcriptase, J. biol. chem., 268, 14875-14880, (1993)
[6] Althaus, I.W.; Chou, J.J.; Gonzales, A.J.; Deibel, M.R.; Chou, K.C.; Kezdy, F.J.; Romero, D.L.; Palmer, J.R.; Thomas, R.C.; Aristoff, P.A., Kinetic studies with the non-nucleoside HIV-1 reverse transcriptase inhibitor U-88204E, Biochemistry, 32, 6548-6554, (1993)
[7] Argmann, C.A.; Chambon, P.; Auwerx, J., Mouse phenogenomics: the fast track to “systems metabolism”, Cell metab., 2, 349-360, (2005)
[8] Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; Harris, M.A.; Hill, D.P.; Issel-Tarver, L.; Kasarskis, A.; Lewis, S.; Matese, J.C.; Richardson, J.E.; Ringwald, M.; Rubin, G.M.; Sherlock, G., Gene ontology: tool for the unification of biology. the gene ontology consortium, Nat. genet., 25, 25-29, (2000)
[9] Barabasi, A.L.; Oltvai, Z.N., Network biology: understanding the Cell’s functional organization, Nat. rev. genet., 5, 101-113, (2004)
[10] Basso, K.; Margolin, A.A.; Stolovitzky, G.; Klein, U.; Dalla-Favera, R.; Califano, A., Reverse engineering of regulatory networks in human B cells, Nat. genet., 37, 382-390, (2005)
[11] Braun, P.; Rietman, E.; Vidal, M., Networking metabolites and diseases, Proc. natl. acad. sci. USA, 105, 9849-9850, (2008)
[12] Chou, K.C., Two new schematic rules for rate laws of enzyme-catalysed reactions, J. theor. biol., 89, 581-592, (1981)
[13] Chou, K.C., Graphic rules in steady and non-steady state enzyme kinetics, J. biol. chem., 264, 12074-12079, (1989)
[14] Chou, K.C., Applications of graph theory to enzyme kinetics and protein folding kinetics. steady and non-steady-state systems, Biophys. chem., 35, 1-24, (1990)
[15] Chou, K.C., Graphic rule for drug metabolism systems, Curr. drug metab., 11, 369-378, (2010)
[16] Chou, K.C., Some remarks on protein attribute prediction and pseudo amino acid composition, J. theor. biol., 273, 236-247, (2011) · Zbl 1405.92212
[17] Chou, K.C.; Forsen, S., Graphical rules for enzyme-catalysed rate laws, Biochem. J., 187, 829-835, (1980)
[18] Chou, K.C.; Cai, Y.D., Predicting protein-protein interactions from sequences in a hybridization space, J. proteome res., 5, 316-322, (2006)
[19] Chou, K.C.; Shen, H.B., REVIEW : recent advances in developing web-servers for predicting protein attributes, Nat. sci., 1, 63-92, (2009)
[20] Chou, K.C.; Kezdy, F.J.; Reusser, F., Kinetics of processive nucleic acid polymerases and nucleases, Anal. biochem., 221, 217-230, (1994)
[21] Chou, K.C.; Zhang, C.T.; Maggiora, G.M., Disposition of amphiphilic helices in heteropolar environments, Proteins, 28, 99-108, (1997)
[22] Cusick, M.E.; Klitgord, N.; Vidal, M.; Hill, D.E., Interactome: gateway into systems biology, Hum. mol. genet., 14, Spec No. 2, R171-R181, (2005)
[23] Davidson, E.H., Network design principles from the sea urchin embryo, Curr. opin. genet. dev., 19, 535-540, (2009)
[24] Doi, A.; Park, I.H.; Wen, B.; Murakami, P.; Aryee, M.J.; Irizarry, R.; Herb, B.; Ladd-Acosta, C.; Rho, J.; Loewer, S.; Miller, J.; Schlaeger, T.; Daley, G.Q.; Feinberg, A.P., Differential methylation of tissue- and cancer-specific cpg island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts, Nat. genet., 41, 1350-1353, (2009)
[25] Ergun, A.; Lawrence, C.A.; Kohanski, M.A.; Brennan, T.A.; Collins, J.J., A network biology approach to prostate cancer, Mol. syst. biol., 3, 82, (2007)
[26] Feldman, I.; Rzhetsky, A.; Vitkup, D., Network properties of genes harboring inherited disease mutations, Proc. natl. acad. sci. USA, 105, 4323-4328, (2008)
[27] Friedman, A.; Perrimon, N., Genetic screening for signal transduction in the era of network biology, Cell, 128, 225-231, (2007)
[28] Gerstein, M.; Lan, N.; Jansen, R., Proteomics. integrating interactomes, Science, 295, 284-287, (2002)
[29] Giallourakis, C.; Henson, C.; Reich, M.; Xie, X.; Mootha, V.K., Disease gene discovery through integrative genomics, Annu. rev. genomics hum. genet., 6, 381-406, (2005)
[30] Giuffrida, D.; Rogers, I.M.; Nagy, A.; Calogero, A.E.; Brown, T.J.; Casper, R.F., Human embryonic stem cells secrete soluble factors that inhibit cancer cell growth, Cell proliferation, 42, 788-798, (2009)
[31] Goh, K.I.; Cusick, M.E.; Valle, D.; Childs, B.; Vidal, M.; Barabasi, A.L., The human disease network, Proc. natl. acad. sci. USA, 104, 8685-8690, (2007)
[32] Gonzalez-Diaz, H.; Perez-Montoto, L.G.; Duardo-Sanchez, A.; Paniagua, E.; Vazquez-Prieto, S.; Vilas, R.; Dea-Ayuela, M.A.; Bolas-Fernandez, F.; Munteanu, C.R.; Dorado, J.; Costas, J.; Ubeira, F.M., Generalized lattice graphs for 2D-visualization of biological information, J. theor. biol., 261, 136-147, (2009) · Zbl 1403.92091
[33] Groenendijk, B.C.; Stekelenburg-de Vos, S.; Vennemann, P.; Wladimiroff, J.W.; Nieuwstadt, F.T.; Lindken, R.; Westerweel, J.; Hierck, B.P.; Ursem, N.T.; Poelmann, R.E., The endothelin-1 pathway and the development of cardiovascular defects in the haemodynamically challenged chicken embryo, J. vasc. res., 45, 54-68, (2008)
[34] Hamosh, A.; Scott, A.F.; Amberger, J.; Valle, D.; McKusick, V.A., Online Mendelian inheritance in man (OMIM), Hum. mutat, 15, 57-61, (2000)
[35] Hamosh, A.; Scott, A.F.; Amberger, J.; Bocchini, C.; Valle, D.; McKusick, V.A., Online Mendelian inheritance in man (OMIM), a knowledgebase of human genes and genetic disorders, Nucleic acids res., 30, 52-55, (2002)
[36] Hu, L.; Huang, T.; Shi, X.; Lu, W.C.; Cai, Y.D.; Chou, K.C., Predicting functions of proteins in mouse based on weighted protein-protein interaction network and protein hybrid properties, Plos one, 6, e14556, (2011)
[37] Ideker, T.; Sharan, R., Protein networks in disease, Genome res., 18, 644-652, (2008)
[38] John, T.; Caballero, O.L.; Svobodova, S.J.; Kong, A.; Chua, R.; Browning, J.; Fortunato, S.; Deb, S.; Hsu, M.; Gedye, C.A.; Davis, I.D.; Altorki, N.; Simpson, A.J.; Chen, Y.T.; Monk, M.; Cebon, J.S., ECSA/DPPA2 is an embryo-cancer antigen that is coexpressed with cancer-testis antigens in non-small cell lung cancer, Clin. cancer res., 14, 3291-3298, (2008)
[39] Kann, M.G., Protein interactions and disease: computational approaches to uncover the etiology of diseases, Brief bioinform, 8, 333-346, (2007)
[40] Kim, J.; Woo, A.J.; Chu, J.; Snow, J.W.; Fujiwara, Y.; Kim, C.G.; Cantor, A.B.; Orkin, S.H., A myc network accounts for similarities between embryonic stem and cancer cell transcription programs, Cell, 143, 313-324, (2010)
[41] Lage, K.; Karlberg, E.O.; Storling, Z.M.; Olason, P.I.; Pedersen, A.G.; Rigina, O.; Hinsby, A.M.; Tumer, Z.; Pociot, F.; Tommerup, N.; Moreau, Y.; Brunak, S., A human phenome-interactome network of protein complexes implicated in genetic disorders, Nat. biotechnol., 25, 309-316, (2007)
[42] Lalli, E.; Alonso, J., Targeting DAX-1 in embryonic stem cells and cancer, Expert opin. ther. targets, 14, 169-177, (2010)
[43] Lamb, J.; Crawford, E.D.; Peck, D.; Modell, J.W.; Blat, I.C.; Wrobel, M.J.; Lerner, J.; Brunet, J.P.; Subramanian, A.; Ross, K.N.; Reich, M.; Hieronymus, H.; Wei, G.; Armstrong, S.A.; Haggarty, S.J.; Clemons, P.A.; Wei, R.; Carr, S.A.; Lander, E.S.; Golub, T.R., The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease, Science, 313, 1929-1935, (2006)
[44] Lee, D.S.; Park, J.; Kay, K.A.; Christakis, N.A.; Oltvai, Z.N.; Barabasi, A.L., The implications of human metabolic network topology for disease comorbidity, Proc. natl. acad. sci. USA, 105, 9880-9885, (2008)
[45] Li, Y.; Agarwal, P., A pathway-based view of human diseases and disease relationships, Plos one, 4, e4346, (2009)
[46] Loscalzo, J.; Kohane, I.; Barabasi, A.L., Human disease classification in the postgenomic era: a complex systems approach to human pathobiology, Mol. syst. biol., 3, 124, (2007)
[47] Ma, Y.L.; Zhang, P.; Wang, F.; Moyer, M.P.; Yang, J.J.; Liu, Z.H.; Peng, J.Y.; Chen, H.Q.; Zhou, Y.K.; Liu, W.J.; Qin, H.L., Human embryonic stem cells and metastatic colorectal cancer cells shared the common endogenous human microrna-26b, J. cell mol. med, (2010)
[48] Maglott, D.; Ostell, J.; Pruitt, K.D.; Tatusova, T., Entrez gene: gene-centered information at NCBI, Nucleic acids res., 33, D54-D58, (2005)
[49] Merrick, D.; Stadler, L.K.; Larner, D.; Smith, J., Muscular dystrophy begins early in embryonic development deriving from stem cell loss and disrupted skeletal muscle formation, Dis. model mech., 2, 374-388, (2009)
[50] Monk, M.; Hitchins, M.; Hawes, S., Differential expression of the embryo/cancer gene ECSA(DPPA2), the cancer/testis gene BORIS and the pluripotency structural gene OCT4, in human preimplantation development, Mol. hum. reprod., 14, 347-355, (2008)
[51] Monzo, M.; Navarro, A.; Bandres, E.; Artells, R.; Moreno, I.; Gel, B.; Ibeas, R.; Moreno, J.; Martinez, F.; Diaz, T.; Martinez, A.; Balague, O.; Garcia-Foncillas, J., Overlapping expression of micrornas in human embryonic colon and colorectal cancer, Cell. res., 18, 823-833, (2008)
[52] Navarro, A.; Monzo, M., Micrornas in human embryonic and cancer stem cells, Yonsei med. J., 51, 622-632, (2010)
[53] Oti, M.; Huynen, M.A.; Brunner, H.G., Phenome connections, Trends genet., 24, 103-106, (2008)
[54] Park, J.; Lee, D.S.; Christakis, N.A.; Barabasi, A.L., The impact of cellular networks on disease comorbidity, Mol. syst. biol., 5, 262, (2009)
[55] Peri, S.; Navarro, J.D.; Kristiansen, T.Z.; Amanchy, R.; Surendranath, V.; Muthusamy, B.; Gandhi, T.K.; Chandrika, K.N.; Deshpande, N.; Suresh, S.; Rashmi, B.P.; Shanker, K.; Padma, N.; Niranjan, V.; Harsha, H.C.; Talreja, N.; Vrushabendra, B.M.; Ramya, M.A.; Yatish, A.J.; Joy, M.; Shivashankar, H.N.; Kavitha, M.P.; Menezes, M.; Choudhury, D.R.; Ghosh, N.; Saravana, R.; Chandran, S.; Mohan, S.; Jonnalagadda, C.K.; Prasad, C.K.; Kumar-Sinha, C.; Deshpande, K.S.; Pandey, A., Human protein reference database as a discovery resource for proteomics, Nucleic acids res., 32, D497-D501, (2004)
[56] Postovit, L.M.; Margaryan, N.V.; Seftor, E.A.; Kirschmann, D.A.; Lipavsky, A.; Wheaton, W.W.; Abbott, D.E.; Seftor, R.E.; Hendrix, M.J., Human embryonic stem cell microenvironment suppresses the tumorigenic phenotype of aggressive cancer cells, Proc. natl. acad. sci. USA, 105, 4329-4334, (2008)
[57] Relaix, F., Skeletal muscle progenitor cells: from embryo to adult, Cell. mol. life sci., 63, 1221-1225, (2006)
[58] Ruiz-Vela, A.; Aguilar-Gallardo, C.; Simon, C., Building a framework for embryonic microenvironments and cancer stem cells, Stem. cell. rev., 5, 319-327, (2009)
[59] Schadt, E.E.; Lamb, J.; Yang, X.; Zhu, J.; Edwards, S.; Guhathakurta, D.; Sieberts, S.K.; Monks, S.; Reitman, M.; Zhang, C.; Lum, P.Y.; Leonardson, A.; Thieringer, R.; Metzger, J.M.; Yang, L.; Castle, J.; Zhu, H.; Kash, S.F.; Drake, T.A.; Sachs, A.; Lusis, A.J., An integrative genomics approach to infer causal associations between gene expression and disease, Nat. genet., 37, 710-717, (2005)
[60] See, A.W.; Kaiser, M.E.; White, J.C.; Clagett-Dame, M., A nutritional model of late embryonic vitamin A deficiency produces defects in organogenesis at a high penetrance and reveals new roles for the vitamin in skeletal development, Dev. biol., 316, 171-190, (2008)
[61] Sharma, S.K.; Lucitti, J.L.; Nordman, C.; Tinney, J.P.; Tobita, K.; Keller, B.B., Impact of hypoxia on early chick embryo growth and cardiovascular function, Pediatr. res., 59, 116-120, (2006)
[62] Shen, Y.Z.; Ding, Y.S.; Gu, Q.; Chou, K.C., Identifying the hub proteins from complicated membrane protein network systems, Med. chem., 6, 165-173, (2010)
[63] Sinclair, K.D.; Singh, R., Modelling the developmental origins of health and disease in the early embryo, Theriogenology, 67, 43-53, (2007)
[64] Smith, D.L.; Nilar, S.H., Homology modeling studies of yeast mitogen-activated protein kinases (MAPKS): structural motifs as a basis for specificity, Protein pept. lett., 17, 732-738, (2010)
[65] Takebe, N.; Ivy, S.P., Controversies in cancer stem cells: targeting embryonic signaling pathways, Clin. cancer res., 16, 3106-3112, (2010)
[66] Tu, Z.; Wang, L.; Xu, M.; Zhou, X.; Chen, T.; Sun, F., Further understanding human disease genes by comparing with housekeeping genes and other genes, BMC genomics, 7, 31, (2006)
[67] Tutarel, O.; Norozi, K.; Hornung, O.; Orhan, G.; Wubbolt-Lehmann, P.; Wessel, A.; Yelbuz, T.M., Images in cardiovascular medicine. cardiac failure in the chick embryo resembles heart failure in humans, Circulation, 112, e352-e353, (2005)
[68] Ullmann, C.D., Cancer stem cells and targeting embryonic signaling pathways, J. thorac. oncol., 5, S492-S494, (2010)
[69] Wang, F.; Li, X.; Xie, X.; Zhao, L.; Chen, W., UCA1, a non-protein-coding RNA up-regulated in bladder carcinoma and embryo, influencing cell growth and promoting invasion, FEBS lett., 582, 1919-1927, (2008)
[70] Wang, J.; Zhang, S.; Wang, Y.; Chen, L.; Zhang, X.S., Disease-aging network reveals significant roles of aging genes in connecting genetic diseases, Plos comput. biol., 5, e1000521, (2009)
[71] Wang, M.; Yao, J.S.; Huang, Z.D.; Xu, Z.J.; Liu, G.P.; Zhao, H.Y.; Wang, X.Y.; Yang, J.; Zhu, Y.S.; Chou, K.C., A new nucleotide-composition based fingerprint of SARS-cov with visualization analysis, Med. chem., 1, 39-47, (2005)
[72] Wolfram, S., Cellular automation as models of complexity, Nature, 311, 419-424, (1984)
[73] Wu, Z.C.; Xiao, X.; Chou, K.C., 2D-MH: a web-server for generating graphic representation of protein sequences based on the physicochemical properties of their constituent amino acids, J. theor. biol., 267, 29-34, (2010) · Zbl 1410.92089
[74] Xiao, X.; Shao, S.H.; Chou, K.C., A probability cellular automaton model for hepatitis B viral infections, Biochem. biophys. res. commun., 342, 605-610, (2006)
[75] Xiao, X.; Wang, P.; Chou, K.C., Predicting protein structural classes with pseudo amino acid composition: an approach using geometric moments of cellular automaton image, J. theor. biol., 254, 691-696, (2008) · Zbl 1400.92416
[76] Xiao, X.; Wang, P.; Chou, K.C., GPCR-CA: a cellular automaton image approach for predicting G-protein-coupled receptor functional classes, J. comput. chem., 30, 1414-1423, (2009)
[77] Xiao, X.; Shao, S.; Ding, Y.; Huang, Z.; Chen, X.; Chou, K.C., Using cellular automata to generate image representation for biological sequences, Amino acids, 28, 29-35, (2005)
[78] Xiao, X.; Shao, S.; Ding, Y.; Huang, Z.; Chen, X.; Chou, K.C., An application of gene comparative image for predicting the effect on replication ratio by HBV virus gene missense mutation, J. theor. biol., 235, 555-565, (2005) · Zbl 1445.92184
[79] Xie, G.; Mo, Z., Three 3D graphical representations of DNA primary sequences based on the classifications of DNA bases and their applications, J. theor. biol., 269, 123-130, (2011) · Zbl 1307.92311
[80] Yildirim, M.A.; Goh, K.I.; Cusick, M.E.; Barabasi, A.L.; Vidal, M., Drug-target network, Nat. biotechnol., 25, 1119-1126, (2007)
[81] Yu, J.F.; Sun, X.; Wang, J.H., TN curve: a novel 3D graphical representation of DNA sequence based on trinucleotides and its applications, J. theor. biol., 261, 459-468, (2009) · Zbl 1403.92226
[82] Zhou, G.P.; Deng, M.H., An extension of Chou’s graphic rules for deriving enzyme kinetic equations to systems involving parallel reaction pathways, Biochem. J., 222, 169-176, (1984)
[83] Zhu, X.; Gerstein, M.; Snyder, M., Getting connected: analysis and principles of biological networks, Genes dev., 21, 1010-1024, (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.