×

Continuous selections for metric projection operators and for their generalizations. (English. Russian original) Zbl 1410.46007

Izv. Math. 82, No. 4, 837-859 (2018); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 82, No. 4, 199-224 (2018).
For Hausdorff-continuous metric projections onto an existence set \(M\) in a Banach space with values fulfilling special conditions concerning infinite connectivity it is proved that the values of such projections must all be contractible, and that \(M\) admits a continuous selection for the metric projection. Conditions under which \(M\) has a continuous \(\varepsilon\)-selection (with respect to an asymmetric seminorm) are then formulated.
For finite-dimensional asymmetric Banach spaces in which the unit ball is a convex polyhedron and for existence sets \(M\) admitting a lower semicontinuous metric projection, there exists a continuous selection for the metric projection. This affirmatively answers a question posed by {A. L. Brown}. Applications in approximation theory and the calculus of variations are mentioned.

MSC:

46B20 Geometry and structure of normed linear spaces
41A65 Abstract approximation theory (approximation in normed linear spaces and other abstract spaces)
54C65 Selections in general topology
49J53 Set-valued and variational analysis
Full Text: DOI

References:

[1] Alimov, A. R.; Tsar’kov, I. G., Connectedness and other geometric properties of suns and Chebyshev sets, Fundam. i Prikl. Mat., 19, 4, 21-91, (2014) · Zbl 1361.46012 · doi:10.1007/s10958-016-3000-1
[2] Alimov, A. R.; Tsar’kov, I. G., Connectedness and solarity in problems of best and near-best approximation, Uspekhi Mat. Nauk, 71, 1-427, 3-84, (2016) · Zbl 1350.41031 · doi:10.4213/rm9698
[3] Konyagin, S. V., On continuous operators of generalized rational approximation, Mat. Zametki, 44, 3, (1988) · Zbl 0694.41022
[4] Livshits, E. D., Stability of the operator of, Izv. Ross. Akad. Nauk Ser. Mat., 67, 1, 99-130, (2003) · Zbl 1079.41007 · doi:10.4213/im420
[5] Ryutin, K. S., Continuity of operators of generalized rational approximation in the space, Mat. Zametki, 73, 1, 148-153, (2003) · Zbl 1024.41012 · doi:10.4213/mzm609
[6] Ryutin, K. S., Uniform continuity of generalized rational approximations, Mat. Zametki, 71, 2, 261-270, (2002) · Zbl 1023.41011 · doi:10.4213/mzm345
[7] Tsar’kov, I. G., Local and global continuous, Izv. Ross. Akad. Nauk Ser. Mat., 80, 2, 165-184, (2016) · Zbl 1356.46013 · doi:10.4213/im8348
[8] Tsar’kov, I. G., Continuous, Mat. Sb., 207, 2, 123-142, (2016) · Zbl 1347.41047 · doi:10.4213/sm8481
[9] Tsar’kov, I. G., Properties of the sets that have a continuous selection from the operator, Mat. Zametki, 48, 4, 122-131, (1990) · Zbl 0729.46011 · doi:10.1007/BF01139608
[10] Tsar’kov, I. G., Properties of sets admitting stable, Mat. Zametki, 89, 4, 608-613, (2011) · Zbl 1245.49024 · doi:10.4213/mzm9101
[11] Michael, E., Continuous selections. I, Ann. of Math. (2), 63, 2, 361-382, (1956) · Zbl 0071.15902 · doi:10.2307/1969615
[12] Tsar’kov, I. G., Relations between certain classes of sets in Banach spaces, Mat. Zametki, 40, 2, 174-196, (1986) · Zbl 0625.46017 · doi:10.1007/BF01159114
[13] Tsar’kov, I. G., Continuous selection for set-valued mappings, Izv. Ross. Akad. Nauk Ser. Mat., 81, 3, 189-216, (2017) · Zbl 1376.54021 · doi:10.4213/im8450
[14] Alimov, A. R., Monotone path-connectedness of Chebyshev sets in the space, Mat. Sb., 197, 9, 3-18, (2006) · Zbl 1147.41011 · doi:10.4213/sm1129
[15] Tsar’kov, I. G., Continuous, Mat. Zametki, 101, 6, 919-931, (2017) · Zbl 1376.41028 · doi:10.4213/mzm11342
[16] Górniewicz, L., Topol. Fixed Point Theory Appl., 4, (2006), Springer: Springer, Dordrecht · Zbl 1107.55001 · doi:10.1007/1-4020-4666-9
[17] Tsar’kov, I. G., Some applications of geometric approximation theory, Diff. uravneniya. Mat. analiz, 143, 63-80, (2017)
[18] Tsar’kov, I. G., Continuity of the metric projection, structural and approximate properties of sets, Mat. Zametki, 47, 2, 137-148, (1990) · Zbl 0695.46003 · doi:10.1007/BF01156834
[19] Sakai, K., Springer Monogr. Math., (2013), Springer: Springer, Tokyo · Zbl 1280.54001 · doi:10.1007/978-4-431-54397-8
[20] Balaganskii, V. S.; Vlasov, L. P., The problem of convexity of Chebyshev sets, Uspekhi Mat. Nauk, 51, 6-312, 125-188, (1996) · Zbl 0931.41017 · doi:10.4213/rm1020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.