×

A time dependent Bayesian nonparametric model for air quality analysis. (English) Zbl 1468.62071

Summary: Air quality monitoring is based on pollutants concentration levels, typically recorded in metropolitan areas. These exhibit spatial and temporal dependence as well as seasonality trends, and their analysis demands flexible and robust statistical models. Here we propose to model the measurements of particulate matter, composed by atmospheric carcinogenic agents, by means of a Bayesian nonparametric dynamic model which accommodates the dependence structures present in the data and allows for fast and efficient posterior computation. Lead by the need to infer the probability of threshold crossing at arbitrary time points, crucial in contingency decision making, we apply the model to the time-varying density estimation for a PM\(_{2.5}\) dataset collected in Santiago, Chile, and analyze various other quantities of interest derived from the estimate.

MSC:

62-08 Computational methods for problems pertaining to statistics
62P12 Applications of statistics to environmental and related topics
62G07 Density estimation
62G99 Nonparametric inference

Software:

ANOVA DDP; CODA; WinBUGS
Full Text: DOI

References:

[1] Achcar, J.; Fernández-Bremauntz, A.; Rodrigues, E.; Tzintzun, G., Estimating the number of ozone peaks in Mexico City using a non-homogeneous Poisson model, Environmetrics, 19, 469-485, (2008)
[2] Achcar, J.; Rodrigues, E.; Paulino, C.; Soares, P., Non-homogeneous Poisson models with a change-point: an application to ozone peaks in Mexico City, Environ. Ecol. Stat., 17, 521-541, (2010)
[3] Arbel, J., Mengersen, K., Rousseau, J., 2014. Bayesian nonparametric dependent model for the study of diversity for species data, arXiv:1402.3093v1. · Zbl 1391.62198
[4] Barrientos, A.; Jara, A.; Quintana, F., On the support of maceachern’s dependent Dirichlet processes and extensions, Bayesian Anal., 7, 277-310, (2012) · Zbl 1330.60067
[5] Caron, F., Davy, M., Doucet, A., 2007. Generalized Polya urn for time-varying Dirichlet process mixtures. In: Conf. on Uncertainty in Artificial Intelligence, Vancouver.
[6] Caron, F.; Davy, M.; Doucet, A.; Duflos, E.; Vanheeghe, P., Bayesian inference for linear dynamic models with Dirichlet process mixtures, IEEE Trans. Signal Process., 56, 71-84, (2008) · Zbl 1391.62144
[7] Comrie, A., Comparing neural networks and regression models for ozone forecasting, J. Air Waste Manag. Assoc., 47, 653-663, (1997)
[8] Crainiceanu, C.; Ruppert, D.; Wand, M., Bayesian analysis for penalized spline regression using winbugs, J. Stat. Softw., 14, 1-24, (2005)
[9] Davison, A.; Smith, R. L., Models for exceedances over high thresholds, J. R. Stat. Soc. Ser. B, 52, 3, 393-442, (1990) · Zbl 0706.62039
[10] De Blasi, P.; Favaro, S.; Lijoi, A.; Mena, R.; Pruenster, I.; Ruggiero, M., Are Gibbs type priors the most natural generalization of the Dirichlet process?, IEEE Trans. Pattern Anal. Mach. Intell., 37, 212-229, (2015)
[11] De Iorio, M.; Müller, P.; Rosner, G.; MacEachern, S., An anova model for dependent random measures, J. Amer. Statist. Assoc., 99, 465, 205-215, (2004) · Zbl 1089.62513
[12] De la Cruz, R.; Quintana, F.; Müller, P., Semiparametric Bayesian classification with longitudinal markers, J. R. Stat. Soc. Ser. C, 56, 2, 119-137, (2007) · Zbl 1490.62363
[13] Dockery, D. W.; Schwartz, J.; Spengler, J. D., Air pollution and daily mortality: associations with particulates and acid aerosols, Environ. Res., 59, 2, 362-373, (1992), URL: http://www.sciencedirect.com/science/article/pii/S0013935105800428
[14] Draghicescu, D.; Ignaccolo, R., Modeling threshold exceedance probabilities of spatially correlated time series, Electron. J. Stat., 3, 149-164, (2009) · Zbl 1326.62220
[15] Dunson, D., Bayesian dynamic modelling of latent trait distributions, Biostatistics, 7, 551-568, (2006) · Zbl 1170.62375
[16] Dunson, D.; Park, J., Kernel stick-breaking processes, Biometrika, 95, 2, 307-323, (2008) · Zbl 1437.62448
[17] Dunson, D.; Pillai, N.; Park, J., Bayesian density regression, J. R. Stat. Soc. Ser. B, 69, 2, 163-183, (2007) · Zbl 1120.62025
[18] Escobar, M.; West, M., Bayesian density estimation and inference using mixtures, J. Amer. Statist. Assoc., 90, 430, 577-588, (1995) · Zbl 0826.62021
[19] Feigin, P.; Tweedie, R. L., Linear functionals and Markov chains associated with Dirichlet processes, Math. Proc. Cambridge Philos. Soc., 105, 579-585, (1989) · Zbl 0677.60080
[20] Ferguson, T., A Bayesian analysis of some nonparametric problems, Ann. Statist., 1, 2, 209-230, (1973) · Zbl 0255.62037
[21] Ferguson, T. S., Prior distribution on the spaces of probability measures, Ann. Statist., 2, 615-629, (1974) · Zbl 0286.62008
[22] Gelfand, A.; Kottas, A.; MacEachern, S., Bayesian nonparametric spatial modeling with Dirichlet process mixing, J. Amer. Statist. Assoc., 100, 471, 1021-1035, (2005) · Zbl 1117.62342
[23] Gelman, A.; Rubin, D. B., Inference from iterative simulation using multiple sequences, Statist. Sci., 7, 457-472, (1992) · Zbl 1386.65060
[24] Gramsch, E.; Cereceda-Balic, F.; Oyola, P.; von Baer, D., Examination of pollution trends in santiago de Chile with cluster analysis of PM10 and ozone data, Atmos. Environ., 40, 5464-5475, (2006)
[25] Griffin, J.; Steel, M., Order-based dependent Dirichlet processes, J. Amer. Statist. Assoc., 101, 473, 179-194, (2006) · Zbl 1118.62360
[26] Guardani, R.; Aguiar, J.; Nascimento, C.; Lacava, C.; Yanagi, Y., Ground-level ozone mapping in large urban areas using multivariate analysis: application to the sao paulo metropolitan area, J. Air Waste Manag. Assoc., 53, 553-559, (2003)
[27] Guardani, R.; Nascimento, C.; Guardani, M.; Martins, M.; Romano, J., Study of atmospheric ozone formation by means of a neural networks based model, J. Air Waste Manag. Assoc., 49, 316-323, (1999)
[28] Gutiérrez, L.; Quintana, F., Multivariate Bayesian semiparametric models for authentication of food and beverages, Ann. Appl. Stat., 5, 4, 2385-2402, (2011) · Zbl 1234.62165
[29] Horowitz, J., Extremes values from a nonstationary stochastic process: an application to air quality analysis, Technometrics, 22, 469-482, (1980)
[30] IARC, 2013. Press release no. 221, International Agency for Research on Cancer, World Health Organization, Geneva, Switzerland.
[31] Lo, A., On a class of Bayesian nonparametric estimates I. density estimates, Ann. Statist., 12, 351-357, (1984) · Zbl 0557.62036
[32] MacEachern, S., Dependent nonparametric processes, (Proc. Bayesian Statistical Science, (1999), Amer. Statistic. Assoc. Alexandria, VA), 50-55
[33] MacEachern, S., Dependent Dirichlet processes, tech. rep., (2000), Department of Statistics, The Ohio State University
[34] Mena, R. H.; Ruggiero, M., Dynamic density estimation with diffusive Dirichlet mixtures, Bernoulli, (2015), in press
[35] Ordieres, J.; Vergara, E.; Capuz, R.; Salazar, R., Neural network prediction model for fine particulate matter (PM2.5) on the US - Mexico border in el paso (Texas) and ciudad juárez (chihuahua), Environ. Modelling Softw., 20, 547-559, (2005)
[36] Pérez, P.; Trier, A.; Reyes, J., Prediction of PM2.5 concentrations several hours in advance using neural networks in santiago, Chile, Atmos. Environ., 34, 1189-1196, (2000)
[37] Plummer, M.; Best, N.; Cowles, K.; Vines, K., Coda: convergence diagnosis and output analysis for mcmc, R News, 6, 1, 7-11, (2006), URL: http://CRAN.R-project.org/doc/Rnews/
[38] Préndez, M., 1993. Características de los contaminantes atmosféricos. In: H. Sandoval, M. Préndez and P. Ulriksen (Eds.), Contaminacón Atmosférica de Santiago: Estado Actual y Soluciones, Cabo de Hornos, pp. 109-186.
[39] Raftery, A., Are ozone exceedance rate decreasing? comment on the paper: extreme value analysis of environmental time series: an application to trend detection in ground-level ozone by R. L. Smith., Statist. Sci., 4, 378-381, (1989)
[40] Roberts, E., Review of statistics extreme values with application to air quality data. part I. review, J. Air Pollut. Control Assoc., 29, 632-637, (1979)
[41] Roberts, E., Review of statistics extreme values with application to air quality data. part II. applications, J. Air Pollut. Control Assoc., 29, 733-740, (1979)
[42] Rodriguez, A.; Dunson, D., Nonparametric Bayesian models through probit stick-breaking processes, Bayesian Anal., 6, 1, 145-178, (2011) · Zbl 1330.62120
[43] Rodriguez, A.; ter Horst, E., Bayesian dynamic density estimation, Bayesian Anal., 3, 2, 339-366, (2008) · Zbl 1330.62180
[44] Sethuraman, J., A constructive definition of Dirichlet priors, Statist. Sinica, 4, 639-650, (1994) · Zbl 0823.62007
[45] Smith, R., Extreme value analysis of environmental time series: an application to trend detection in ground-level ozone, Statist. Sci., 4, 367-393, (1989) · Zbl 0955.62646
[46] Walker, S., Sampling the Dirichlet mixture model with slices, Commun. Stat. - Simul. Comput., 36, 45-54, (2007) · Zbl 1113.62058
[47] Outdoor air pollution in the world cities, (2011), World Health Organization Geneva, Switzerland, WHO
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.